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Abstract

We study school choice problems with indifferences in priority orders and

identify conditions under which there exists a strategy proof and student opti-

mal stable, or constrained efficient, matching mechanism. A priority structure

for which strategyproofness and constrained efficiency are compatible is called

solvable. In this paper we consider the case in which schools are either spe-

cialized, i.e., have a strict priority ranking of all applicants, or non-specialized,

i.e., all applicants have equal priority. In this setting we provide a full char-

acterization of solvable priority structures if no school can admit more than

one student. For the case of general capacity vectors we derive a (weaker) suf-

ficient condition for solvability. Our proof is constructive and uses a version

of the student proposing deferred acceptance algorithm with preference-based

tie-breaking.

Keywords: School Choice, Equal Priority, Strategy-Proofness, Constrained Ef-

ficiency.

1 Introduction

Recently, the school choice problem has received a lot of attention in the theoretical

and applied matching literature starting with Abdulkadiroglu and Sönmez (2003). In
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this problem, a set of students has to be assigned among a set of public schools. Each

school has an exogenously given priority ordering of students. A central allocative

criterion in the literature is stability, which requires that no student should envy

another student for a school that she has strictly higher priority for. If students

cannot have equal priority at schools, the student proposing deferred acceptance

algorithm (SDA) produces a student optimal stable matching and provides students

with dominant strategy incentives to submit their preferences over schools truthfully.

This is not only of theoretical interest, as school choice authorities in Boston and New

York have recently decided to adopt a variant of this mechanism (Abdulkadiroglu,

Pathak, Roth, and Sönmez (2006) and Abdulkadiroglu, Pathak, and Roth (2009)). A

problem that has not received much attention in the theoretical literature until the

recent work by Erdil and Ergin (2008) is that in most real-life applications students

may have the same priority at a given school. In the Boston public school choice

system, for example, a major determinant for the priority of a student is whether

she lives in the walk zone of a school, that is, not further away from the school than

some fixed distance. Of course, a walk zone inherits (much) more than one student

in a densely populated city so that schools’ priority orderings have large indifference

classes. This seemingly small change in the model changes results dramatically. The

major problem is that ties between equal priority students have to be broken in order

to determine an assignment. This induces additional stability constraints that can

lead to a substantial decrease in student welfare (Abdulkadiroglu, Pathak, and Roth

(2009)). We call a mechanism constrained efficient, if it is stable with respect to

the original weak priority structure and never incurs welfare loss due to tie-breaking.

Unfortunately, Erdil and Ergin (2008) show that there are priority structures for

which a constrained efficient and strategy-proof mechanism fails to exist.

A natural question that is at the heart of the present study is whether this is an

exception or the rule in school choice problems with weak priority orders. We call

a priority structure solvable, if there exists a strategy-proof and constrained efficient

mechanism. In this paper we make important initial progress in characterizing the

class of solvable priority structures. We introduce a model of (non-)specialized schools

in which a school is either specialized and has a strict priority ranking of students, or

a school is non-specialized and all students have the same priority. While it cannot be

expected that this assumption is exactly satisfied in real-life applications, we view the

analysis of this model as a useful first step since it provides important insights into

how we can deal with large indifference classes in the priority structure. Furthermore,
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this model is interesting in its own right since it unifies the school choice problem with

strict priority orders of Abdulkadiroglu and Sönmez (2003) and the house allocation

problem of Hylland and Zeckhauser (1979).

For the case that no school can admit more than one student, we fully characterize

solvable priority structures by two simple and intuitive conditions. These conditions

ensure that most of the ties can be broken exogenously, that is, without referring to

student preferences. Since the conditions required for solvability are very restrictive,

our results for the unit capacity case have the flavor of an impossibility result. This is

in line with Gibbard (1973) and Satterthwaite (1979)’s classical negative results con-

cerning dominant strategy implementation. However, our negative results critically

depend on the assumption that no school can admit more than one student. In a sec-

ond step we then consider general capacity vectors and show that significantly weaker

conditions are sufficient for solvability. As for the unit capacity case, our conditions

connect the capacity vector with the amount of allowable variability across the pri-

ority orderings of specialized schools. Most importantly, our results show that there

is some scope for breaking ties according to student preferences and we introduce a

new version of the SDA with endogenous tie-breaking (SDA-ETB). For solvable prior-

ity structures the associated matching mechanism is strategy-proof for students even

though tie-breaking is (partly) based on elicited preferences. Interestingly, increasing

capacities substantially enlarges the scope for preference based tie-breaking.

This chapter is organized as follows: After discussing the related literature we

introduce the school choice problem with weak priorities and relevant existing results

in section 2. In section 3 we motivate the need for preference based tie-breaking by

means of a simple example. In section 4 we introduce the (non-)specialized schools

model. This section contains the main results of this chapter. In section 5 we conclude

and discuss our results as well as possible extensions. All proofs are relegated to the

Appendix.

Related Literature

Ehlers (2007) was the first to study the problem of indifferences in priority orders. In

particular he considered a simple three student example (that does not belong to our

(non-)specialized schools environment) for which no exogenous tie-breaking rule guar-

anteed the constrained efficiency of the SDA. Nevertheless, he showed by construction

that a strategy-proof and constrained efficient matching mechanism existed. We are

the first to systematically study the possibility of preference based tie-breaking in
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school choice problems with indifferences in priority orders.

Apart from the above paper, the literature on the school choice problem with

indifferences has mainly focused on exogenous tie-breaking. Here, a central question

has been whether there should be a single lottery that is used to break ties at all

schools, or whether there should be a separate lottery for each school. Pathak (2008)

considers a random assignment problem in which all students initially have the same

priority for each school. He shows that a market based approach, in which a priority

structure for each school is randomly selected and students are then allowed to trade

their priorities, is equivalent to the random serial dictatorship, in which a single

lottery is conducted and students then choose schools in the order determined by the

lottery, in the sense that both produce exactly the same lottery over outcomes.1 In

a similar vein, Abdulkadiroglu, Pathak, and Roth (2009) show that for any school

choice problem, any constrained efficient matching can be reached by first using a

single lottery to break all ties and then running the deferred acceptance algorithm.

The focus of both of these papers is to give a rationale for using a single lottery to

break all ties for all schools instead of multiple lotteries. They do not discuss how one

can elicit the information about student preferences that is necessary to break ties in

a way that avoids additional welfare loss, which is the main focus of our study.

More related in focus is the main theoretical result in Abdulkadiroglu, Pathak,

and Roth (2009), which shows that no strategy-proof matching mechanism can dom-

inate student optimal stable matching mechanism with any fixed tie-breaking rule.

The dominance relation they consider is very strong since it requires that all stu-

dents weakly prefer the outcome of the dominating mechanism to the outcome of the

dominate mechanism for all preference profiles, with at least one strict preference

for at least one profile. This already suggests that the class of mechanisms that is

not dominated by another strategy-proof mechanism is quite large. Our results show

that it is not sufficient to restrict attention to the class of SDAs resulting from fixed

tie-breaking rules if one is interested in strategy-proof and constrained efficient mech-

anisms. Of course, our SDA-ETB does not dominate the SDA with an arbitrary fixed

tie-breaking rule for all preference profiles in the above sense. However, in contrast

to the latter mechanism it guarantees that there is never additional welfare loss due

to tie-breaking if the priority structure is solvable.

1This is an extension of a classical result by Abdulkadiroglu and Sonmez (1998) who show that
in the house allocation problem the random serial dictatorship is equivalent to the core from random
endowments, which conducts a single lottery to determine an initial allocation of indivisible objects
and then lets agents trade towards a core outcome.
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Another closely related paper is Erdil and Ergin (2008). They show that a match-

ing is constrained efficient if and only if there is no stable improvement cycle, that

is, no cyclical sequence of trades that respects stability constraints and makes all

students involved better off. This motivates a simple constrained efficient procedure:

Calculate the SDA outcome using an arbitrary tie-breaking rule. If the outcome is

inefficient, successively eliminate stable improvement cycles until a constrained effi-

cient outcome is reached. We will see that there exist solvable priority structures for

which the stable improvement cycles procedure is not strategy-proof no matter how

ties are broken initially and no matter how stable improvement cycles are selected.

In particular, it is not sufficient to restrict attention to the stable improvement cycles

procedure if one is interested in strategy-proof and constrained efficient mechanisms.

For the case of strict priorities, a number of papers have studied the relation

between properties of the priority structure and the existence of mechanisms with

certain desirable properties. Most prominently, Ergin (2002) studies the relationship

between efficiency (with respect to student preferences) and stability. He introduces a

simple but restrictive acyclicity condition that is shown to be necessary and sufficient

for the compatibility of efficiency and stability.2 Note that for the problem with strict

priorities, the compatibility of strategy-proofness and constrained efficiency follows

from the strategy-proofness of the SDA. At least for the unit capacity case we can

formally show that Ergin’s conditions are more restrictive than the conditions required

for solvability.3

Finally, we mention the recent paper by Abdulkadiroglu, Che, and Yasuda (2008)

who study the school choice problem with equal priorities from an ex-ante cardinal

welfare perspective. They introduce a “choice augmented deferred acceptance al-

gorithm” (CADA) in which students submit an ordinal ranking of schools and also

specify a target school. The auxiliary message is used as a tie-breaking device and

can be interpreted as allowing a student to signal the intensity of her preference for

the target school. In a model with a continuum of students, the CADA is shown

to improve upon the SDA with fixed tie-breaking from an ex-ante perspective. The

approach of Abdulkadiroglu, Che, and Yasuda (2008) differs from ours as we concen-

2Another example is Kesten (2006) who derives conditions under which the SDA coincides with
the top trading cycles algorithm, which has been one of SDA’s main competitors in applications to
the school choice problem.

3Although Ergin (2002)’s conditions are for the case of strict priorities, it is easy to see that
they guarantee the compatibility of efficiency and stability when imposed on the priority structure
of specialized schools in our model. If one demands that all constrained efficient matchings should
be constrained efficient, stronger conditions are required (Ehlers and Erdil (2009)).
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trate on the classical ex-post welfare perspective in a model with a finite number of

students.

2 The School Choice Problem with Weak Priori-

ties

A School Choice Problem with Weak Priorities is given by

• a finite set of students I,

• a finite set of schools S,

• a vector of capacities q = (qs)s∈S,

• a profile of weak priority orders of schools �= (�s)s∈S, and

• a profile of strict student preferences R = (Ri)i∈I .

The only difference to the school choice problem with strict priorities introduced

in Chapter I.2 is that two distinct students i and i′ can now have equal priority for

a school s, denoted by i ∼s i′. Remember that i �s i′ means that i has strictly

higher priority for school s than student i′. For two subsets J, J ′ ⊂ I, we denote

by J �s J ′ that i �s i′ for all i ∈ J and i′ ∈ J ′. Note that we continue to assume

students can never be indifferent between two distinct schools. As everything else

is fixed, we will think of a (school choice) problem as being given by a profile R of

student preferences. A rule, or matching mechanism, is a function that assigns a

matching to each problem. A correspondence is a function that assigns a non-empty

set of matchings to each problem and rule f is a selection from correspondence F , if

f(R) ∈ F (R) for all problems R.

Remember that a matching µ is stable (or fair) for the school choice problem R,

, if it

(i) is individually rational, that is, µ(i)Rii for all students i ∈ I,

(ii) eliminates justified envy, that is, there is no student school pair (i, s) such that

sPiµ(i) and i �s i′ for some i′ ∈ µ(s), and

(iii) is non-wasteful, that is, there is no student school pair (i, s) such that sPiµ(i)

and |µ(s)| < qs.
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At this point it is important to note that stability only depends on strict rankings in

the priority structure. It is known (cf example 2.15 in Roth and Sotomayor (1991))

that in the presence of ties in the priority structure there may not exist a stable

matching µ that all students weakly prefer to any other stable matching. However,

given the finiteness of the problem there always exists (at least one) stable assignment

which is not Pareto dominated by any other stable matching with respect to student

welfare. We call a matching with this property constrained efficient and given some

profile of strict student preferences R we denote by OS�(R) the set of constrained

efficient matchings.

If priorities are strict, OS�(R) contains exactly one matching which can be found

by applying the SDA. However, if there are ties in the priority structure the SDA

cannot be applied unless we specify some rule for breaking ties. Formally, a fixed

tie-breaking rule, or strict transformation, of � is a strict priority structure �′ that

preservers the strict ranking of �, that is, i �′s j whenever i �s j. Let ST (�)

denote the set of all strict transformations of �. Given some �′∈ ST (�), let f�
′

denote the matching mechanism that associates the outcome of the SDA with strict

priority structure �′ to each problem. It is known (Dubins and Freedman (1981),

Roth (1982)) that for all �′∈ ST (�), f�
′

is strategy-proof and stable with respect to

�. Erdil and Ergin (2008) note that f�
′
may, however, fail to be constrained efficient.

Abdulkadiroglu, Pathak, and Roth (2009) aim to provide a rationale for the SDA with

a fixed tie-breaking rule and show that no strategy-proof mechanism can dominate

f�
′

for any �′∈ ST (�), that is, there is no strategy-proof mechanism g such that

for all problems R, gi(R)Rif
�′(R) for all i ∈ I, with at least one strict preference for

at least one problem and at least one student. Of course, this dominance relation is

very strong so that the set of mechanisms that are undominated in this sense is very

large.

Recently, Erdil and Ergin (2008) introduced an algorithm that always produces

a constrained efficient matching for weak priority structures. The main idea is that

whenever a stable matching is not constrained efficient, then it is possible to increase

student welfare via a cyclical exchange that respects stability constraints. More for-

mally, let µ be a stable matching for some R. Then student i desires school s at µ if

sPiµ(i). For each school s, let Ds(µ) denote the set of highest �s-priority students

among those who desire s at µ. A stable improvement cycle (SIC) at µ and R consists

of m distinct students i1, . . . , im such that for all l = 1, . . . ,m, il ∈ Dµ(il+1)(µ) (where

m+1 := 1). Erdil and Ergin (2008) show that µ ∈ OS�(R) if and only if µ admits no
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stable improvement cycle (SIC) at µ and PI . This leads them to suggest the following

procedure to achieve a constrained efficient outcome.

The Stable Improvement Cycles Algorithm

Select a fixed single tie-breaking rule and compute the associated SDA outcome

given the submitted preferences of students.

If the outcome is not constrained efficient, allow students involved in a SIC to

realize the corresponding cyclical exchange. Continue with this procedure until

we arrive at a constrained efficient matching.

As shown in Erdil and Ergin (2008), this procedure is not, in general, strategy-

proof. This is not necessarily a fault of the stable improvement cycles as the same

authors show that there exist weak priority structures � which do not admit any

strategy-proof selection from OS�.

Motivated by this result, we call a priority structure � solvable, if there exists

a strategy-proof and constrained efficient selection from OS�. Our main goal is to

characterize the class of solvable priority structures. In the next section we start with

a motivating example.

3 The (Non-)Specialized Schools Model

In this paper we consider a restricted class of school choice environments with two

types of schools: Specialized schools have a strict priority ranking, while non-specialized

schools assign the same priority to every student. More formally, we have the follow-

ing.

Definition 1. The priority structure � is a (non-)specialized schools environ-

ment, if there exists a partition of S into two non-empty sets S0 and S1 such that

(i) S0 comprises the set of non-specialized schools, that is, for all s ∈ S0 and all

i, j ∈ I, i ∼s j, and

(ii) S1 comprises the set of specialized schools, that is, for all s ∈ S1 and all i, j ∈ I
such that i 6= j, i �s j or j �s i.

In this language schools s1, . . . , s6 in the example of section 3 were specialized,

while s7 was the only non-specialized school. One interpretation of this model is that
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a specialized school’s priority ordering result from subject test(s) in the discipline(s)

relevant for this school, e.g. a sports oriented school makes admission contingent

on sports trials. Non-specialized schools on the other hand offer general educational

training and therefore do not discriminate between students. Apart from this inter-

pretation, our motivation for studying the (non-)specialized schools model is twofold.

First, our analysis is an important initial step towards a characterization of solv-

able priority structures in the school choice problem with indifferences in priority

orders. We consider the extreme situation where a school’s priority order has either

one or |I| indifference classes. However, it will become clear that our results also have

important implications for the general school choice problem whenever some or all

schools assign equal priority to a group of students which is sufficiently large, but at

the same time potentially much smaller than |I|.
Secondly, our model bridges the gap between two important environments, which

have been studied extensively in the literature.

(i) If S1 = ∅, then all students have equal priority at all schools. This case is known

as the house allocation problem.4 Among others, Svensson (1999), Papai (2000),

and Pycia and Unver (2009), are interested in identifying rules which satisfy

strategy-proofness and efficiency.5 Since all students have equal priority at all

schools, stability is vacuously satisfied by any rule and constrained efficiency is

equivalent to efficiency. The class of strategy-proof and efficient rules is very

large and has not been characterized in the literature.

(ii) If S0 = ∅, then no two students have equal priority at a school and we are

back to the school choice problem with strict priorities from Chapter I.2. For

this problem the student optimal stable rule is the only strategy-proof and

constrained efficient rule.6

In the presence of both specialized and non-specialized schools a strategy-proof and

constrained efficient mechanism does not always exist and we derive tractable condi-

tions under which a priority structure is solvable.

For the remainder of this paper we restrict attention to the (non-)specialized

schools environment. It is important to keep in mind that stability constraints only

4This problem was first studied by Hylland and Zeckhauser (1979).
5In fact, all these papers derive characterizations of rules that satisfy strategy-proofness, efficiency,

and different sets of additional axioms.
6In fact, the student optimal stable rule is also the only strategy-proof and stable rule (Alcalde

and Barbera (1994)).
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come from the priority orders of specialized schools. In the following, we will denote

the priority ordering of a specialized school s ∈ S1 by �s instead of �s to emphasize

that no two students can have equal priority. Let �1= (�s)s∈S1 be the priority

structure of specialized schools. It is easy to see that the conditions for solvability

can only concern �1. The following assumptions will be maintained throughout the

paper:

A1 There are at least two specialized and at least one non-specialized school.

A2 The priority structure of specialized schools is connected in the sense that there

is no strict subset J ⊂ I such that for all s ∈ S1, i �a j for all i ∈ J and all

j ∈ I \ I.

A3 All schools have the same capacity q ≥ 1.

If A1 is not satisfied, solvability is trivial since either no ties have to be broken

(since there is no non-specialized school) or the priority ranking of the only special-

ized school can be used to break all ties. The other two assumptions simplify the

formalities that follow and we discuss their role in section X.

3.1 Exogenous Tie-Breaking

In this section, we characterize when it is possible to obtain a strategy-proof and con-

strained efficient matching mechanism by breaking all ties in the priority structure

once and for all and then finding the agent optimal matching in the associated alloca-

tion problem with strict priorities. Note that in the context of the (non-)specialized

schools model with symmetric capacities either all or no ties can be broken exoge-

nously. With this in mind, we define exogenous tie-breaking as follows.

Definition 2. A non-specialized schools environment � admits exogenous tie-

breaking if there exists an ordering (i1, . . . , in) of agents such that for all preference

profiles R, there exists a constrained efficient matching µ with the property that µ(il) ∈
S0 and µ(il)Pil′µ(il′) for l, l′ ∈ {1, . . . , n} implies l′ > l.

In words, this says that ties at non-specialized schools can be broken exogenously if

we can find a way to index agents such that no agent ever envies a higher indexed agent

for any non-specialized school. In light of the emphasis that previous studies have

placed on exogenous tie-breaking, it is important to know when it can be implemented

at no welfare costs. It is intuitively clear, that this is always possible when all students
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have the same priority rank at each specialized schools since the common ranking of

specialized schools could then be used to break all ties at non-specialized schools.

However, this is clearly not a necessary condition since exogenous tie-breaking is, for

example, clearly possible if there are no more than q students. The relevant question

is by how much we can allow students’ priorities to vary across specialized schools.

For the case of unit capacities, i.e. q = 1, we now introduce a simple notion of priority

reversals.

Definition 3. The priority structure of specialized schools �1 has a weak priority

reversal if there exist two distinct students i, j ∈ I, two specialized schools a, b ∈ S1,

and ka, kb ∈ I \ {i, j} such that

(i) i �a ka �a j, and

(ii) j �b kb �b i.

We show below that the absence of weak priority reversals is necessary and suf-

ficient for exogenous tie-breaking. To get some intuition for this result, consider the

case where �1 has a weak priority reversal with ka = kb =: k...to be continued

Next, we introduce a strong acyclicity notion on �1 for general (symmetric) ca-

pacities q. We show below that this condition is equivalent to the condition of no

weak priority reversals when q = 1.

Definition 4. The priority structure of specialized schools �1 is strongly acyclic

at q with respect to ordering (i1, . . . , in) of I, if there is no index l and sequences

of distinct students {jk}Mk=1 ⊆ I, pairwise disjoint sets of students {Ik}Mk=1 ⊆ 2I , and

distinct specialized schools {bk}M−1
k=1 ⊆ S1, such that

(i) j1 = il,

(ii) jk ∈ I \ {Ik ∪ {il−1}} and |{jk} ∪ Ik| = q, for all k,

(ii) bk ∈ S1 and jk ∪ Ik �bk jk+1, for all k < M , and

(iii) jM ∪ IM ⊆ {i1, . . . , il−2}.

The priority structure of specialized schools is strongly acyclic at q if there is some

ordering of students such that �1 is strongly acyclic with respect to it.

The next result shows that for q = 1, strong acyclicity is equivalent to the absence

of weak priority reversals.
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Lemma 1. The priority structure of specialized schools is strongly acyclic at 1 if and

only if it has no weak priority reversals.

The following is the first main result of this paper.

Theorem 1. A non-specialized schools environment � admits exogenous tie-breaking

if and only if �1 is strongly acyclic.

Proof of Theorem 1

We show first that strong acyclicity is necessary for exogenous tie-breaking.

Fix a common capacity q and some �1 that is not strongly acyclic at q. Let

(i1, . . . , in) be an arbitrary ordering of agents. We show that there exists a

preference profile R such that for every constrained efficient matching µ, there

exists a non-specialized school c such that µ(il) = cPil′µ(il′) for some l, l′ ∈
{1, . . . , n} such that l > l′.

Let l ∈ {2, . . . , n} and the sequences {jk, Ik}Mk=1 and {bk}M−1
k=1 be such that

conditions (i) to (iv) of Definition 4 are satisfied. Let l′ ≤ l − 2 be such that

jM = il′ and let bM ∈ S0 be arbitrary. Consider the following preference profile

(we only specify the part that is relevant for the counterexample)

Ril′
: bM−1, bM ,

Ril−1
: bM ,

Ril : bM , b1,

Rjk : bk−1, bk for all k ∈ {2, . . . ,M − 1},

Rj : bk for all k ∈ {1, . . . ,M} and all j ∈ Ik.

If a matching µ is stable with respect to the ordering (i1, . . . , in) and the priority

structure of specialized schools �1, we would have that µ(il) = b1, µ(il′) = bM

and µ(jk) = bk for k ∈ {2, . . . ,M−1}. But this would mean that j1, . . . , jM form

a stable improvement cycle with respect to µ. Hence, any constrained efficient

matching for this profile must violate stability with respect to the candidate

ordering (i1, . . . , in). Since the ordering was chosen arbitrarily, this completes

the proof.

We now show that strong acyclicity is sufficient for exogenous tie-breaking. Let

(i1, . . . , in) be any ordering of I such that �1 is strongly acyclic with respect to

(i1, . . . , in). Define a strict priority structure �′ as follows: (i) for all s ∈ S0, set
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il �s il′ for all l, l′ such that l < l′, (ii) for all s ∈ S1, �′s=�s. Let f�
′
denote the

resulting student optimal stable matching mechanism with respect to �′. We

show that for any profile of student preferences R, f�
′
(R) is a student optimal

stable matching with respect to �.

Suppose to the contrary that i1, . . . , im is a stable improvement cycle at µ :=

f�
′
(R) and R. To simplifty notation set sk := µ(ik) for all k ∈ {1, . . . ,m}. It is

clear that this SIC has to contain both specialized and non-specialized schools.7

Furthermore, if sk ∈ S1 then for all j ∈ I \ (µ(sk) ∪ {ik−1}) such that skPjµ(j)

we must have ik−1 �sk
j. By the rules of the SDA we can assume w.l.o.g. that

sm ∈ S0 and that there exists a set of students Im ⊆ I \ {i1, . . . , im} and a

student j ∈ I \ (Im ∪ {i1, . . . , im}) such that j ∪ Im �′sm
im−1. To see this

note that the previous statements and the rules of the SDA imply that at least

one of the students on the SIC was rejected by his desired school because of q

students who are all not part of the SIC. The rules of the SDA similarly imply

the existence of sets I1, . . . , In−1 ⊆ I such that for all distinct k, k′ ∈ {1, . . . ,m},
Ik ∩ Ik′ = ∅ and for all k < n, ik ∪ Ik �′sk

ik−1 (with i0 = in). Let k1 be the

smallest index such that sk1 ∈ S1. I claim that we must have j �′sm
ik1 (this is

not hard to show but a bit cumbersome). But this yields a contradiction

since we must also have ik1 �′sm
im...

It is useful to know when we do not require additional knowledge about specialized

schools’ priority structures in order to be able to conclude that exogenous tie-breaking

is possible. From the proof of Theorem 1, it is evident that this is only possible as

long as |I| ≤ 2q and that in this case it is completely irrelevant how we break ties. As

soon as |I| > 2q, we need to place severe restrictions on specialized schools’ priority

structures to prevent exogenous tie-breaking from imposing significant welfare costs

beyond those imposed by stability. We will show in the next section, among other

things, that a strategyproof constrained efficient mechanism always exists as long as

|I| ≤ 3q irrespective of how students are ranked by specialized schools. Hence, the

wedge between what can be achieved by exogenous versus endogenous tie-breaking

increases in the capacity vector.

7Maybe we want a lemma on such basic properties of SICs in the last subsection?
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3.2 Endogenous tie-breaking

Throughout this section we consider the case where all schools can admit at most one

student, i.e. where qs = 1 for all s ∈ S. Of course, schools can usually admit more

than one student and the reader may prefer to think of the allocation of tasks in a

society rather than the school choice problem for this section. Society has a strict

preference over who takes on specialized tasks, while it is indifferent as to who takes

on a non-specialized task.

The example in Section 3 suggests that strategy-proofness and constrained effi-

ciency are always compatible if there are at most three students (a formal proof can

be found below). Not surprisingly, this positive result does not extend to the case of

four or more students as we will shortly see. In this section we identify two related

sources for the incompatibility between strategy-proofness and constrained efficiency.

The first source is introduced in the following definition.

Definition 5. Let � be a non-specialized schools environment with unit capacities.

Then �1 contains an ambiguous 1-tie if there exist two specialized schools s1, s2 ∈
S1 and four distinct students i1, i2, i3, i4 ∈ I such that both i1 �s1 i3 �s1 i2 and

i2 �s2 i4 �s2 i1.

To see the problems associated with ambiguous 1-ties, consider the smallest exam-

ple where it can be violated: There are four students 1, . . . , 4, two specialized schools

s1, s2, and one non-specialized school s3. The priority structure �1 is such that (the

remaining rankings are irrelevant)

1 �s1 3 �s1 2 and 2 �s2 4 �s2 1.

Now consider the preference profile

R R1 R2 R3 R4

s2 s1 s3 s3

s3 s3

s1 s2

.

For this profile, 1 and 2 would prefer to exchange their priorities for s1 and s2.

Here, this is not problematic since neither 3 nor 4 are interested in these schools.

However, either 3 or 4 will have to remain unassigned since s3 cannot admit more

than one student. A strategy-proof procedure has to ensure in particular that 3 and 4

cannot profit by claiming that s1 and/or s2 are acceptable, respectively. We show in
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the Appendix that this cannot be achieved by any constrained efficient mechanism,

thus proving the following result.

Proposition 1. Let � be a (non-)specialized schools environment with unit capacities.

Then � is solvable only if �1 does not contain an ambiguous 1-tie.

The absence of ambiguous 1-ties is a strong restriction. Suppose for example that

s1 is a music oriented school while s2 is a sports oriented school. Both schools assign

priorities according to performance in auditions. Typically, there will be allrounders

who do relatively well in both specializations. At the same time, there will also

be specialists who have a musical talent but are not very sportive (and the other

way around). If there are at least two allrounders and two specialists, the priority

structure is not solvable since it contains an ambiguous 1-tie. However, there is

still some scope for different priority orderings across specialized schools as the next

example demonstrates.

Example 1. There are four students 1, . . . , 4, six specialized schools s1, . . . , s6, and

one non-specialized school s7. The priority structure at specialized schools is as fol-

lows.

�s1 �s2 �s3 �s4 �s5 �s6
1 2 1 1 2 2

3 3 2 2 1 1

2 1 4 3 4 3

4 4 3 4 3 4

Note that �1 does not contain an ambiguous 1-tie. Thus, in principle the door

remains open for possibility results.

However, it is easy to see that any fixed tie breaking rule leads to violations of

constrained efficiency for some preference profiles so that some or all of the ties have

to broken preference based. A natural candidate for a constrained efficient assignment

procedure is the following: Set 1 ∼0 2 �0 3 �0 4 and break ties at the non-specialized

school s7 according to this ordering. Thus, only the tie between 1 and 2 remains to be

broken endogenously. Now if 1 and 2 apply to s7 in some round of the SDA procedure,

temporarily ignore the capacity constraint at s7. If 3 is temporarily matched to s2 by

the end of the SDA procedure, 1 is rejected by s7. In any other case 2 is rejected.

While this certainly guarantees a constrained efficient allocation, 4 can manipulate

the tie breaking decision to her benefit. To see this consider the profile

15



R R1 R2 R3 R4

s7 s7 s3 s1

s3 s1 s2

.

Here, 4 would be left unmatched while 3 obtains a place at s3. However, if she

claims that R′4 : s3, s1, 3 would be rejected by s3 and would subsequently apply to

s2. But then 1 would be rejected by s7, causes 4 to be rejected at s3, and 4 ultimately

obtains a place at her true top choice (under R4) school s1. Hence, the above procedure

is not strategy-proof.

The following definition formalizes one problematic feature of the priority struc-

ture in this example.

Definition 6. Let � be a (non-)specialized schools environment with unit capacities.

Then �1 contains ambiguity at the top if there are four distinct students i1, i2, i3, i4

and three distinct specialized schools s1, s2, s3 ∈ S1 such that i1 �s1 i3 �s1 i2 �s1 i4,

i2 �s2 i3 �s2 i1 �s2 i4, and {i1, i2} �s3 i4 �s3 i3.

In the above example there was ambiguity at the top concerning �s1 ,�s2 , and

�s3 . In order to avoid ambiguity at the top, at least one of the schools’ priority

orderings needs to be changed. For example, we could set �̃s2 equal to any of the

priority orderings of the other specialized schools to obtain a priority structure that

contains no ambiguous 1-ties and no ambiguity at the top. The following shows that

ambiguity at the top is the second source for the incompatibility of strategy-proofness

and constrained efficiency.

Proposition 2. Let � be a (non-)specialized schools environment with unit capacities.

Then � is solvable only if �1 does not contain no ambiguity at the top.

Above we showed that our intuitive idea for achieving a constrained efficient

matching does not provide students with the right incentives. Note that the state-

ment of Proposition 2 is much stronger since it says that any assignment procedure

has to sacrifice either strategy-proofness or constrained efficiency.

3.3 General Capacities - Sufficient Conditions

The results in the last section support a pessimistic view about the possibilities of

obtaining strategy-proof and constrained efficient mechanisms. It is important to
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keep in mind that we assumed that all schools could admit at most one student. In

this section we turn to the case of general capacities. We derive a precise connection

between the capacity vector and the amount of variability in school rankings allowed

by a solvable priority structure. We first consider the case of identical capacities at

all specialized schools.

3.3.1 Symmetric Capacities at Specialized Schools

In this subsection we concentrate on the case of identical capacities at all specialized

schools. We assume for now that the set of students is connected in the sense that

there is no strict subset J ⊂ I such that J �s I \ J for all s ∈ S1. We discuss below

how our results translate to the case where this assumption is not satisfied.

As a first step we derive an equivalent formulation of the two necessary conditions

for the unit capacity case of the last section. The idea is to then adapt these conditions

to the case of general symmetric capacities, where a full characterization seems to be

out of reach as we discuss in section 5. We require a bit of additional notation and

terminology: For all s ∈ S1 and k ∈ {1, . . . , |I|}, rk(�s) denotes the student who has

kth highest priority for s, i.e. |{i ∈ I : i �s rk(�s)}| = k − 1. For k ∈ {1, . . . , |I|},
let Lk = (∪s∈S1{rk(�s)})\(L1 ∪ · · · ∪ Lk−1) denote the set of students who have kth

highest priority at some specialized school but never rank higher. Let K be the

smallest integer such that N = L1 ∪ . . . ∪ LK , so that in particular Lk = ∅ for all

k > K. We have the following.

Proposition 3. If |I| > 3 and �1 does not contain ambiguous 1-ties or ambiguity at

the top then

O1 Lk ⊆ {rk(�s), rk+1(�s), rk+2(�s)} for all s ∈ S1 and k ∈ {1, . . . , K}, and

O2 there is exactly one student in L1 who has third highest priority at some spe-

cialized school.

Conversely, if |I| > 3 and �1 satisfies O1 and O2 then �1 does not contain

ambiguous 1-ties or ambiguity at the top.

Propositions 1-3 imply that a student’s rank in priority orderings can differ by at

most two across specialized schools if all schools can admit at most one student and

the priority structure is solvable. This allows us to define a global ordering �0 on I by

setting i1 �0 i2 if i1 ∈ Lk and i2 ∈ Lk′ for some k < k′. The key property here is that

if i1 �0 i2 for two students i1, i2, there cannot be a third student i3 and a specialized

school s ∈ S1 such that i2 �s i3 �s i1. As we show below this implies that ties between
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two students who are strictly ordered according to �0 can be broken exogenously, i.e.

without conditioning on student preferences. Thus, only ties between students in the

same indifference set of �0 remain to be broken according to student preferences.

Condition O2 implies that if |I| ≥ 4, we never have to consider the preferences of

lower priority students in L2 ∪ . . . ∪ LK in order to break the tie between the two

students in L1. Note that since |L1| = 2 this basically means that the tie between

the two students at the top can be broken exogenously if |I| ≥ 4.

Intuitively, it is clear that increasing capacities should enlarge the scope for pref-

erence based tie breaking and should increase the allowable variability in priority

orderings of specialized schools. The important task here is to identify the exact

form of this relationship. We now show how the conditions for solvability from the

unit capacity case can be adapted to the capacity vector. For the following, we fix

a capacity vector for schools with the property that all specialized schools have the

same capacity. Let q1 be the common capacity of all specialized schools, let q0
(1) be

the lowest capacity of any non-specialized school, and q0
(2) ≥ q0

(1) be the second lowest

capacity.8

First of all, the priority structure is solvable if the number of students is sufficiently

small compared to available capacities. Here, the critical value turns out to be p =

q1 + q0
(1) + min{q1, q0

(2)}. To see that any priority structure is solvable if |I| ≤ p note

that if tie-breaking becomes necessary, i.e. at least q0
(1) + 1 students are interested in

the same non-specialized school s1 ∈ S0, at most one specialized school can have filled

its capacity. Furthermore, if some specialized school s2 ∈ S1 has filled its capacity,

there cannot be a third school s3 ∈ S\{s1, s2} that has to reject any student. We show

below how the priority ordering of s2 can be used to determine who should be rejected

by s1. Secondly, if |I| > p the variability of priority orders across specialized schools

has to be restricted. The next definition formally summarizes our requirements in

this case.

Definition 7. Suppose that I is connected and that |I| > p. Then �1 satisfies limited

p-variability if

O1(p) Lk ⊂ {rk(�s), . . . , rp(�s)} for all k ≤ p− 2 and all s ∈ S1,

O2(p) Lk ⊂ {rk(�s), rk+1(�s), rk+2(�s)} for all p− 2 < k and all s ∈ S1, and

O3(p) there is exactly one student in L1 ∪ . . .∪Lp−2 who has pth highest priority at

some specialized school.

8Remember that we assumed |S0| ≥ 2.
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The idea behind this condition is that we want to assign high priority for non-

specialized schools to students who have high, i.e. at least (p− 2)nd highest, priority

for specialized schools. Note that the amount of allowable variability declines as

we move down the rankings of specialized schools. This is because the demands of

students with higher priority could effectively lead to a reduction of the number of

seats at some schools. Eventually, everything reduces to the unit capacity case and

a student’s priority can vary by at most two. This is illustrated by the following

example.

Example 2. There are four specialized schools s1, . . . , s4, two non-specialized schools

s5, s6, and six students 1, . . . , 6. Capacities are q1 = 2 and qs5 = 1 and qs6 = 2.

Priorities of specialized schools are given by

�s1 : 1 2 3 4 5 6

�s2 : 4 3 2 1 5 6

�s3 : 2 1 3 6 4 5

�s4 : 3 2 1 5 4 6

Note that for this priority structure the set of all students is connected and |I|
exceeds the critical value of p = 5. We have L1∪L2∪L3 = {1, 2, 3, 4} and L4 = {5, 6}.
Since no student in L1 ∪ L2 ∪ L3 is ranked lower than fifth and only 4 is ranked fifth

(at schools s3 and s4) �1 satisfies limited p-variability.

Consider again the interpretation of priorities at specialized schools as being de-

termined by test scores. If all schools had unit capacity, the priority structure would

not be solvable: 1 and 4 would then be specialists for schools s1 and s2, respectively,

while 2 and 3 would be allrounders. However, given the above capacity vector 1 and

4 are not too specialized and we will see below that the above priority structure is

solvable.

Intuitively, assigning high priority to students in the upper segment of students

who rank at least (p − 2)nd at some specialized school minimizes the number of

rejections following a rejection at a non-specialized school. It is important to note that

limited p-variability is a joint condition on �1 and the capacity vector. In particular,

the capacity vector determines the size of the upper segment. In case I exceeds the

critical value of p, limited p-variability ensures that ties between two students in the

upper segment can always be broken conditional only on the preferences of other

upper segment students. Since the size of the upper segment cannot exceed p, this
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is always possible as argued above and formally proven below.9 At this point a few

remarks about limited p-variability are in order.

Remark 1:

(i) Conditions O1(p) and O2(p) imply that |L1| ≤ p and that I = L1 if |L1| = p.

Now let K be the minimal integer such that N = L1 ∪ . . . ∪ LK so that in

particular Lk = ∅ for all k > K. If |I| > p, O1(p) and O2(p) imply that

· |L1 ∪ . . . ∪ Lp−2| = p− 1,

· |Lk| = 1 for all p− 2 < k ≤ K − 1, and

· |LK | ∈ {1, 2}.

In particular we must have |I| ∈ {K + 1, K + 1} if |I| > p.

(ii) A major benefit of limited p-variability is that it is tractable and very easy

to verify. If |I| > p, we first need to check that L1 ⊂ {r1(�s), . . . , rp(�s)}
for all specialized schools s ∈ S1. This can be implemented as follows: Take

an arbitrary specialized school s ∈ S1. Then check whether r1(�s) ∈ {r1(�s′
), . . . , rp(�s′)} for all s′ ∈ S1 \ {s}. This requires at most (|S1| − 1)p steps.

Proceeding in this fashion, we can test whether no student in L1 is ever ranked

lower than pth in at most |S1|(|S1| − 1)p < (|S1|)2|I| steps.

Now, the conditions for the remaining Lk sets can be verified completely analo-

gously so that checking O1(p) and O2(p) requires at most K|S1|(|S1| − 1)p <

(|I|)2(|S1|)2 steps. Note that O3(p) can be tested at (almost) no additional

computational cost: As soon as we find a student in L1 ∪ . . . ∪ Lp−2 who is

ranked pth at some specialized school we have to check that all other students

in this segment of the priority structure rank no lower than (p− 1)st.

We now design an assignment procedure that is strategy-proof and constrained

efficient provided that limited p-variability is satisfied. For the following we fix a

capacity vector as well as the priority structure �1 of specialized schools and assume

that �1 satisfies limited p-variability. The procedure consists of two steps: In the

first step we define an ordering �0 as in the unit capacity case. In the second step, we

9Actually, limited p-variability ensures that the upper segment contains exactly p− 1 students if
|I| > p. The reasoning behind restricting the upper segment of students to those ranking no lower
than (p − 2)nd (and not (p − 1)st) is a bit subtle and will become clear in the proof of Theorem 1
in the Appendix
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introduce a new version of the SDA algorithm which uses this ordering as the common

priority ordering of all non-specialized schools. The procedure breaks ties between

students in the same indifference class of �0 endogenously on basis of temporary

assignments.

Step 1: Ordering Students

• If |I| ≤ p, set i ∼0 j for all i, j ∈ I.

• If |I| > p, set

(i) i ∼0 j for all i, j ∈ L1 ∪ . . . ∪ Lp−2

(ii) i �0 j if i ∈ Lk and j ∈ Lk′ with k < k′ ≤ K and k′ ≥ p

(iii) i ∼0 j if i, j ∈ LK

As in the unit capacity case this ordering has the property that if i1 �0 i2 there

cannot be a third student i3 and a specialized school s ∈ S1 such that i2 �s i3 �s
i1. We show below that this implies that the tie between i1 and i2 can be broken

exogenously without violating constrained efficiency. All remaining ties can be broken

endogenously. By Remark 1.(i) there are at most two non-singleton indifference sets

of �0 if |I| > p (and one indifference set if |I| ≤ p): An upper segment consisting of

p−1 students who have at least (p−2)nd highest priority for some specialized school

and, possibly, a lower segment consisting of two students in LK . For the purpose of

breaking ties in these two segments endogenously we label students according to their

position in �0. Within an indifference class, the label is arbitrary with the exception

that if |I| > p we assign the highest label p−1 (remember Remark 1.(i)) in the upper

indifference set of �0 to the only student in L1∪. . .∪Lp−2 who has pth highest priority

at some specialized school. 10 Labels will be used as a baseline for endogenous tie

breaking. This baseline is modified only if a specialized school has filled its capacity.

In the following we abuse notation slightly and identify a student with her label.

Thus, if |I| > p we write I = {1, . . . , K + 1} if |LK | = 1 and I = {1, . . . , K + 2}
10More formally, the labeling can be described as follows: If |I| ≤ p choose a permutation πI :

I → {1, . . . , |I|} at random. If |I| > p let ĩ be the unique student in L1 ∪ . . . ∪ Lp−2 who can have
pth highest priority at some specialized school and set πI (̃i) = p− 1.

(i) Choose a permutation πI : (L1 ∪ . . . ∪ Lp−2) \ {̃i} → {1, . . . , p− 2} at random.
(ii) For k ∈ {p− 1, . . . ,K − 1} and i ∈ Lk set πI(i) = k + 1.
(iii) If |LK | = 2 randomly pick a student i ∈ LK and set πI(i) = K + 1. Set πI(i′) = K + 2 for

the other student i′ in LK .
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if |LK | = 2, where the labeling adheres to the rules above. We are now ready to

describe the SDA procedure with endogenous tie breaking (SDA-ETB).

Step 2: The SDA with Endogenous Tie Breaking

The algorithm takes as inputs the (relevant portion of the) capacity vector (q1, q0
(1), q

0
(2)),

the priority structure of specialized schools �1, the ordering �0 calculated in Step 1,

and a profile of student preferences.

Round 1: Each student applies to her most preferred school. Each specialized school

s ∈ S1 admits the q1 highest priority students according to �s. Each non-

specialized school s ∈ S0 admits the qs students with the lowest labels among

those who aply to it. If necessary, it admits all students in the same indifference

class of �0 as the qsth highest labeled student who was admitted in addition.

Let µ1 be the resulting temporary assignment.

If one of the rejected students has not yet applied to all acceptable schools, go

to Round 2. If all rejected students have applied to all acceptable schools and

there is a non-specialized s ∈ S0 such that |µ1(s)| > qs, use subroutine TB(µ1)

to determine a rejection and go to Round 2. Else, stop.

...

Round t: Each student rejected in Round t− 1 applies to her most preferred school

among those that have not yet rejected one of her proposals. Each specialized

school s ∈ S1 admits the q1 highest priority students according to �s. Each

non-specialized school s ∈ S0 admits the qs students with the lowest labels

among those who aply to it. If necessary, it admits all students in the same

indifference class of �0 as the qsth highest labeled student who was admitted

in addition. Let µt be the resulting temporary assignment.

If one of the rejected students has not yet applied to all acceptable schools, go to

Round t+ 1. If all rejected students have applied to all acceptable schools and

there is a non-specialized school s ∈ S0 such that |µt(s)| > qs, use subroutine

TB(µt) to determine a rejection and go to Round t+ 1. Else, stop.

The crucial ingredient of this algorithm is the tie-breaking subroutine which is

applied to determine a rejection at non-specialized schools. The subroutine is applied
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only if nothing else moves in the sense that there is no other way for the algorithm

to proceed than to break a tie within an indifference class of �0.

Subroutine TB(µt): If there is a non-specialized school s ∈ S0 such that |µt(s)| >
qs and i ∼0 j for all i, j ∈ µt(s), set s0 := s and go to Step TB(µt).1. Else,

let s0 ∈ S0 be the non-specialized school such that LK ⊂ µt(s0) and go to Step

TB(µt).2.

Step TB(µt).1: If there is a specialized school s1 ∈ S1 s.t. |µt(s1)| = q1 and

i ∼0 j for all i, j ∈ µt(s1) ∪ µt(s0) let i1 be the student with the lowest

priority according to �s1 among students in µt(s0). School s0 rejects i1 if

µt(s1) �s1 i1.
In any other case s0 rejects student with the highest label among students

in µt(s0).

Step TB(µt).2: Let s1 := µt(K). If K + 2 �s1 K + 1, s0 rejects K + 1.

In any other case, s0 rejects K + 2.

The intuition for the tie-breaking subroutine is as follows: Step TB(µt).1 covers

tie-breaking in the upper indifference class of �0. It ensures that following a tie

breaking decision in the upper segment there is a further rejection of a student in

this segment only if it is unavoidable. Step TB(µt).2 covers tie-breaking in the

lower indifference class of �0. It ensures that there is no further rejection following

a tie-breaking decision in the lower segment. Note that this step of the tie-breaking

subroutine is reached only if |I| > p and |LK | = 2 since otherwise there can never be

a non-specialized school that temporarily admits students from different indifference

classes of �0 and violates its capacity constraint.

Note that of the inputs required by the mechanism everything but students’ pref-

erences are assumed to be exogenously given. In the following we supress the de-

pendency of the outcome of the SDA-ETB on the exogenous factors for notational

simplicity. Given a problem R let fETB(R) thus denote the associated outcome of

the SDA-ETB procedure. We have the following.

Theorem 2. Suppose that either |I| ≤ p or �ss satisfies limited p-variability. Then

the following statements are true.

(i) fETB(R) is constrained efficient for all problems R.

(ii) fETB is strategy-proof.
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In particular, � is solvable if either |I| ≤ p, or |I| > p and �1 satisfies limited

p-variability.

At this point it makes sense to illustrate the SDA-ETB by means of an example.

Example 3. Consider again the environment of example 2. Note that the labels of

students have been chosen in accordance with our rules since 4 is the only student in

L1 ∪ . . . ∪ L3 who ranks 5th (at schools s3 and s4). Consider the following problem:

R R1 R2 R3 R4 R5 R6

s6 s6 s3 s6 s5 s5

s3 s1 s3

s5

.

For this problem we obtain

fETB(R) =

(
1 2 3 4 5 6

s6 s6 s3 s3 s1 s5

)
.

This example illustrates that it is important to break ties in the upper segment

L1 ∪ L2 ∪ L3 before breaking ties in the lower segment L4: If we would have broken

the tie at s5 first (according to our rules for tie breaking), 6 would have been rejected.

In subsequent rounds of SDA-ETB, student 4 would then have been rejected by s6

and s3. Since 4 �0 5, 4 would have subsequently obtained a place at s5. But then

there would be a stable improvement cycle consisting of 4 and 6. The main reason for

breaking ties in the lower segment last is that this way we can ensure that there are

no further rejections after tie-breaking. A similar example can be used to show that

it is important to wait with endogenous tie-breaking until nothing else moves.

3.3.2 Asymmetric Capacities

In this section we turn to the case of general capacity vectors. In the following, let

q1
(1) be the minimal capacity of specialized schools, q0

(1) and q0
(2) be defined as in the

last section, and p = q1
(1) + q0

(1) + min{q1
(1), q

0
(2)} be the modified critical value. It is

easy to see that our previous results imply that if the set of students is connected and

�1 satisfies limited p-variability whenever |I| > p then � is solvable.11

We now discuss how our results extend to the case where I is not connected.

Since we are dealing with a finite problem there has to exist a minimal set J1 such

11One just needs to replace q1 with the actual capacities of specialized schools in the formulation
of the SDA-ETB. Everything else remains exactly the same.
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that for any s ∈ S1, J1 �s I \ J1. We call J1 the minimal top set of I with respect

to �1. Proceeding inductively, let Jt be the minimal top set of I \ (J1 ∪ . . . ∪ Jt−1)

with respect to �1. We call (Jt)t≥1 the minimal top set partition of I with respect to

�1. Suppose for the sake of clarity that I = J1 ∪ J2. Let fETB|J1 denote the SDA-

ETB mechanism when we make all places at all schools available to students in J1.

Since J1 is connected, our previous analysis implies that fETB|J1 is strategy-proof and

constrained efficient provided that �1 |J1 satisfies limited p-variability. In principle,

there are two ways to guarantee that there is a strategy-proof and constrained efficient

procedure for students in J2 which we now discuss. In both cases, we assign all

students in J1 with higher priority for non-specialized schools than all students in J2.

This ensures in particular that a student in J1 can never envy a student in J2.

(i) In some instances it might be feasible to elicit reports from students in J2

after assignments for students in J1 have been determined. In this case given

a profile RJ1 elicited from students in J1, we can reduce capacities at schools

according to fETB|J1(RJ1). Let p1 be the resulting modified critical value and let

fETB|J2 denote the SDA-ETB that allocates remaining places among students

in J2. Again, our analysis from the connected case implies that fETB|J2 is

strategy-proof and constrained efficient provided that �1 |J2 satisfies limited

p1-variability.

(ii) If we restrict attention to assignment procedures that simultaneously elicit a

report from all students, the restrictions for solvability in J2 become more re-

strictive. We have to require solvability for the lowest possible critical value

that could be induced by the demands of students in J1. For example, consider

the case q1
(1) = 4, q0

(1) = q0
(2) = 2, and |J1| = 3. Here, the worst case would be

if all students in J1 were interested in the minimal capacity specialized school

leading to a new critical value of 4.

From the above discussion it is clear that even when all specialized schools initially

have identical capacities, we have to consider the case of asymmetric capacities if I

is not connected since the demands of students in J1 may lead to a problem with

asymmetric capacities for the remaining student population.

However, note that in the unit capacity case the critical value is always 3. This

implies that the same conditions guaranteeing solvability for the connected case also

guarantee solvability for the general case. Hence, we obtain the following theorem as

a corollary to Propositions 1-3 and Theorem 1.
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Theorem 3. Suppose � is a (non-)specialized schools environment with unit capac-

ities. Then � is solvable if and only if �1 does not contain ambiguous 1-ties or

ambiguity at the top.

To conclude this section note that it could be the case that even though � is not

solvable, there is a strategy-proof and constrained efficient procedure for a subpopu-

lation of students. To see this consider again the case of unit capacities and suppose

that I = J1 ∪ J2. If �1 |J1 satisfies limited 3-variability, but �1 |J2 does not, there

is a strategy-proof and constrained efficient mechanism for students in J1 but not for

students in J2.

4 Conclusion and Discussion

This chapter derived a full characterization of solvable priority structures in (non-

)specialized schools environments with unit capacity. Significantly weaker sufficient

conditions were introduced for the case of general capacity vectors. Our conditions

show precisely how much variability in priority orderings across specialized schools

can be allowed in order to guarantee existence of a constrained efficient and strategy-

proof mechanism. The proof of sufficiency was constructive and used a modified

deferred acceptance procedure with (potentially) preference based tie-breaking. The

results show that it is not sufficient to concentrate on fixed tie-breaking rules if one

is interested in strategy-proof and constrained efficient school choice systems. Fur-

thermore, the scope for preference based tie-breaking increases in the number of slots

available at schools. We now discuss several important open questions.

4.1 Uniqueness of the Tie-Breaking Rule

In this chapter we introduced tractable conditions that guarantee solvability of a pri-

ority structure. Given that these conditions are satisfied we introduced the strategy-

proof and constrained efficient SDA-ETB procedure. One important idea of this

mechanism was to assign those students who have high priority at specialized school

also high priority for all non-specialized schools. This could be considered problem-

atic from an equity perspective and school choice authorities might be interested in

knowing whether there are other strategy-proof and constrained efficient mechanisms.

In the following we discuss whether there could be other ways to break ties. In this

section we concentrate on the case of unit capacities at all schools, assume that I is

26



connected, and fix a solvable environment �.

First, suppose we have set i1 �0 i2 for two students i1, i2 ∈ I so that i2 can

never obtain a non-specialized school desired by i1. Can there be strategy-proof

and constrained efficient procedure that exogenously breaks ties at non-specialized

schools in favor of i2? To see that this is impossible, note that the construction of

�0 ensures that there exists a specialized school s ∈ S1 and a third student i3 such

that i1 �s i3 �s i2. Let s̃ ∈ S0 be one of the non-specialized schools.12 Now let f be

a strategy-proof and constrained efficient mechanism such that i2 always has higher

priority for s̃ than i1. Consider first the problem

R1 R1
i1

R1
i2

R1
i3

s̃ s s̃

s̃ s

.

We must have fi1(R
1) = 1, fi2(R

1) = s, and fi3 = s̃. Otherwise there would

be a stable improvement cycle given that i2 can never envy i1 for s̃. Now suppose

that R2
i3

: s̃ and consider R2 = (R1
i1
, R1

i2
, R2

i3
). By strategy-proofness we must have

f(R2) = f(R1). Next, let R2
i1

: s̃, s and R3 = (R2
i1
, R1

i2
, R2

i3
). By strategy-proofness

and stability, we must have fi1(R
3) = s. Constrained efficiency then implies fi2(R

3) =

i2 and fi3(R
3) = s̃. Finally, let R3

i3
= s, s̃ and consider R4 = (R2

i1
, R1

i2
, R3

i3
). Since i2

cannot envy i1 for a place at s̃ and i2 cannot obtain a place at s given R3
i3

, it is not

possible that fi3(R
4) = s. But if fi3(R

4) = s̃, we must have fi1(R
4) = s so that i1

and i3 form a stable improvement cycle. Hence, we must have fi3(R
4) = i3. But then

i3 has an incentive to submit R2
i3

when the other students submit R2
i1

and R1
i2

!

More generally, we would like to know whether strategy-proofness and constrained

efficiency require us to always follow the ordering �0 for the case of solvable priority

structures. That is, if f is a strategy-proof and constrained efficient mechanism can

it be the case that for some problem R we have s̃Pifi(R), i �0 j, and fj(R) =

s̃ for some non-specialized school s̃ ∈ S0? To see that this is possible let R̂ =

{R : |{i ∈ I : A(Ri) 6= ∅}| ≤ 2} denote the set of profiles where at most two students

i ∈ I have a non-empty set of acceptable schools A(Ri). Let �′∈ ST (�) be an

arbitrary strict transformation. Now we can modify the rule fETB as follows: for any

profile R, (i) if R /∈ R̂, then f̂(R) = fETB(R); and (ii) if R ∈ R̂, then f̂(R) = f�
′
(R).

It is easy to see that f̂ is strategy-proof and constrained efficient. An important open

12Note that we must have |I| ≥ 4 if we exogenously break any tie. For the following we assume
that no student in I \ {i1, i2, i3} is interested in s or s̃.
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question is whether we can allow such violations of �0 on more interesting domains

of preferences.

4.2 Full Characterization for General Capacities

Beyond the case of unit capacities we have only derived sufficient conditions for solv-

ability. An important question is whether these conditions can be weakened fur-

ther. We first illustrate the additional problems for designing strategy-proof and

constrained efficient mechanisms when our conditions are not satisfied using a simple

example.

There are two specialized schools s1, s2 and two non-specialized schools s3, s4.

Both specialized schools can admit three students while the two non-specialized

schools can only admit one student. There are six students 1, . . . , 6 and the priority

ordering is given by

�s1 : 1 2 3 4 5 6

�s2 : 6 5 4 3 2 1

Note that in this example the critical value is p = 5 and that the priority structure

does not satisfy limited p-variability. Now consider the preference profile

R R1 R2 R3 R4 R5 R6

s3 s2 s4 s4 s2 s3

s7 s3 s2 s2

.

Now suppose we were to use the SDA-ETB with the tie-breaking procedure we

defined above for this example assuming that i ∼0 j for all i, j ∈ {1, . . . , 6}. Then

µ1(s1) = ∅, µ1(s2) = {2, 5}, µ1(s3) = {1, 6}, and µ1(s4) = {3, 4}. Now 6 would be

rejected in the first round and 4 would be rejected by s4 in the second round. In the

third round, 4 applies to s2 so that 2 would be rejected and applies to s3. Since s2 has

filled its capacity and 1 is the lowest priority student at s2, SDA-ETB would break

the resulting tie in favor of 2. But then 2 and 6 form a stable improvement cycle.

The problem in this example is that there are two non-specialized schools (s3 and s4)

that have to reject students. If �1 had satisfied limited p-variability, it would have

been irrelevant which student is rejected by s3 or s4 since there could not have been

a subsequent rejection at some specialized school. Here, in contrast it is important

to condition tie-breaking on the priority ranking of school s2 in the first place even

though this school has not filled its capacity in round 1 of SDA-ETB. Nevertheless,
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we do not have a counterexample showing that the above priority structure is not

solvable so that the door remains open for further possibility results despite the just

mentioned complications.13

Secondly, consider the case of identical capacity q ≥ 2 at all schools so that p = 3q

(and the above issue does not arise). Is limited p-variability necessary for solvability

here? While we do believe that this is true, potential counterexamples needed to

show necessity quickly become intractable. The main problem here is that it is very

hard to pin down assignments in case non-specialized schools can admit more than

one student. We view the weakening of sufficient conditions for solvability to be

substantially more important than extending our impossibility results and have thus

not worked towards obtaining a full characterization for the case of general capacities

at non-specialized schools.

4.3 Beyond Non-specialized schools environments

In this paper we have concentrated on the (non-)specialized schools environment. To

see that there is room for positive results outside this environment, we now consider

an easy example.

There are three schools s1, s2, s3 and three students 1, 2, 3. All schools have a

capacity of one and the priority structure is as follows

�s1 �s2 �s3
1 2 3

{2, 3} {1, 3} {1, 2}

To see that this priority structure is solvable, note that the above environment

is isomorphic to a house allocation with existing tenants problem as introduced by

Abdulkadiroglu and Sonmez (1999): Student i is an existing tenant for school si.

Their version of the top-trading cycles algorithm is strategy-proof and constrained

efficient for such problems.14

13We do expect the tie-breaking rule to be somewhat more complicated to describe. In general, we
conjecture that a critical value of 2q1 + q0(1) could work in case of identical capacities at specialized
schools. This is easily seen to be true when there is just one non-specialized school. However, we
have not (yet) been able to prove that this critical value works in the general case. A similar remark
applies to the case of asymmetric capacities, where there also seems to be some additional room for
solvability.

14This is a special case of the hierarchical exchange rules introduced by Papai (2000). She shows
that this class of rules exhaust the class of rules that are group strategy-proof, efficient, and satisfy a
notion of reallocation-proofness. Recently, Pycia and Unver (2009) have characterized the (slightly)
larger class of group strategy-proof and efficient rules.
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In general, it will not be possible to rely on the top-trading cycles algorithm

since it is known that it may lead to unstable allocations. Furthermore, the above

approach is not applicable, for example, when the set of students with top priority for

some school is larger than the school’s capacity (as in the (non-)specialized schools

environment). However, the above shows that the door in principal remains open for

possibility results and a (partial) characterization of solvable priority structures in

the general case is an important question for future research.
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Proof of Proposition 1

Suppose to the contrary that �1 contains an ambiguous 1-tie but that f is a strategy-

proof and constrained efficient selection from the stable correspondence. W.l.o.g. we

can assume that there are exactly four students 1, 2, 3, 4 and two specialized schools

s1, s2 such that

1 �s1 3 �s1 2 and 2 �s2 4 �s2 1. (1)

Let s3 be one of the non-specialized schools. To derive a contradiction, we con-

sider six preference profiles which define a cycle in the space of preference profiles.

The following diagram summarizes the preference profiles used in our proof. Arrows

indicate how we move between the profiles.

R2 R1
1 R1

2 R2
3 R1

4

s2 s1 s1 s3

s3 s3 s3

s1 s2

↓

←

R1 R1
1 R1

2 R1
3 R1

4

s2 s1 s3 s3

s3 s3

s1 s2

←

R6 R1
1 R1

2 R1
3 R2

4

s2 s1 s3 s3

s3 s3 s2

s1 s2

↑

R3 R1
1 R3

2 R2
3 R1

4

s2 s1 s1 s3

s3 s3 s3

s1

→

R4 R1
1 R3

2 R2
3 R2

4

s2 s1 s1 s3

s3 s3 s3 s2

s1

→

R5 R1
1 R1

2 R2
3 R2

4

s2 s1 s1 s3

s3 s3 s3 s2

s1 s2

We start with the profile R1. Let

µ =

(
1 2 3 4

s2 s1 s3 4

)
and µ̄ =

(
1 2 3 4

s2 s1 3 s3

)
.

It is straightforward that these are the only constrained efficient matchings for the

profile R1. Thus, we must have f(R1) = µ or f(R1) = µ̄. By the symmetries of the

example, we can assume f(R1) = µ without loss of generality.

Now let R2
3 : s1, s3 and R2 = (R2

3, R
1
−3). By strategy-proofness, f3(R

2) 6= 3. Note

that for R2 there is no constrained efficient matching that assigns 3 to s3. Hence, we

must have f3(R
2) = s1. It is easy to see that this in conjunction with constrained

efficiency implies

f(R2) =

(
1 2 3 4

s2 s3 s1 4

)
. (2)

32



Next, suppose 2 declares s2 unacceptable, that is, consider R3
2 : s1, s3 and the

profile R3 = (R1
1, R

3
2, R

2
3, R

1
4). By strategy-proofness we must have f2(R

3) = s3 so

that constrained efficiency implies f(R3) = f(R2).

Now consider the profile R4 = (R1
1, R

3
2, R

2
3, R

2
4). By strategy-proofness, f4(R

4) 6=
s3. Since 4 �s2 1 and 1 and 4 are the only students who would like to be assigned

to s2, we have f1(R
4) 6= s2 = f4(R

4). If f1(R
4) = s3, 1 and 4 would form a SIC

under f(R4) - a contradiction to constrained efficiency. Thus, f1(R
4) = s1. But then

f3(R
4) 6= s3 since otherwise by 3 �s1 2, 1 and 3 would form a SIC. Thus, f3(R

4) = 3

so that

f(R4) =

(
1 2 3 4

s1 s3 3 s2

)
. (3)

Now consider the profile R5 = (R1
1, R

1
2, R

2
3, R

2
4). By strategy-proofness, f2(R

5) = s3

and similarly to above, f(R5) = f(R4).

Finally, consider the profileR6 = (R1
1, R

1
2, R

1
3, R

2
4). By strategy-proofness, f3(R

6) =

3. Since the first choices of the other three agents are compatible, constrained effi-

ciency implies f(R6) = f(R5).

This yields the desired contradiction since s3 = f4(R
2
4, R

1
−4)P

1
4 f4(R

1) = 4. Hence,

there is no strategy-proof and constrained efficient mechanism. �

Proof of Proposition 2

Consider a �1 that contains ambiguity at the top. Let s1, s2, s3 be three specialized

schools and 1, 2, 3, 4 ∈ I be four distinct students such that15

�s1 �s2 �s3
1 2 1

3 3 2

2 1 4

4 4 3

Let s4 be one of the non-specialized schools. Suppose to the contrary that there

exists a strategy-proof and constrained efficient rule f .

The main part of the proof considers four preference profiles, which are summa-

rized in the following diagram. As in the proof of Proposition 5, arrows indicate how

15Note that due to the symmetries of the definition it is without loss of generality to assume that
1 �s3 2.

33



we move between preference profiles.

R1 R1
1 R1

2 R1
3 R1

4

s4 s1 s4 s3

s4 s3

s1

↓

R2 R2
1 R2

2 R2
3 R1

4

s2 s4 s4 s3

s4 s3

s2

↓

R3 R1
1 R3

2 R1
3 R2

4

s4 s4 s4 s1

s3 s3 s3

s1 s2

↔

R4 R1
1 R3

2 R2
3 R2

4

s4 s4 s4 s1

s3 s3 s3

s2 s2

Let R1
1 : s4;R

1
2 : s1, s4;R

1
3 : s4, s3, s1;R

1
4 : s3, and R1 be the resulting preference

profile. It is easy to see that there are exactly two constrained efficient matchings at

R1,

µ1 =

(
1 2 3 4

s4 2 s1 s3

)
and µ̄1 =

(
1 2 3 4

1 s1 s4 s3

)
.

Claim 1: f(R1) = µ1.

Proof of Claim 1. Suppose to the contrary that f(R1) = µ̄1. Starting from profile

R1 we will consider the following preference profiles for these students:

R1 R1
1 R1

2 R1
3 R1

4
s4 s1 s4 s3

s4 s3

s1

↓

R1,7 R
1,1
1 R1

2 R
1,2
3 R

1,3
4

s4 s1 s3 s4

s1 s4 s4

↑

→

R1,8 R
1,1
1 R1

2 R
1,2
3 R

1,1
4

s4 s1 s3 s4

s1 s4 s4 s3

↓
R1,1 R1

1 R1
2 R

1,1
3 R1

4
s4 s1 s4 s3

s4 s3

↓

R1,6 R
1,1
1 R

1,1
2 R

1,2
3 R

1,3
4

s4 s1 s3 s4

s1 s4 s4

s3

←

R1,5 R
1,1
1 R

1,1
2 R

1,2
3 R

1,1
4

s4 s1 s3 s4

s1 s4 s4 s3

s3

↑
R1,2 R1

1,1 R1
2 R

1,1
3 R1

4

s4 s1 s4 s3

s1 s4 s3
→

R1,3 R
1,1
1 R

1,1
2 R

1,1
3 R1

4
s4 s1 s4 s3

s1 s4 s3

s3

→

R1,4 R
1,1
1 R

1,1
2 R

1,2
3 R1

4
s4 s1 s3 s3

s1 s4 s4

s3

Let R1,1
3 : s4, s3 and R1,1 = (R1

1, R
1
2, R

1,1
3 , R1

4). By strategy-proofness (for student

3) and constrained efficiency we must have that f(R2) = f(R1). Let R1,1
1 : s4, s1

and R1,2 = (R1,1
1 , R1

2, R
1,1
3 , R1

4). By strategy-proofness (for student 1) and 1 �s1
3 �s1 2 �s1 4, we must have f1(R

1,2) = s1. Now if f2(R
1,2) = s4, then 1 and 2

form a SIC, a contradiction. Thus, by constrained efficiency, we must have that

f(R1,2) =

(
1 2 3 4

s1 2 s4 s3

)
.
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Let R1,1
2 : s1, s4, s3 and R1,3 = (R1,1

1 , R1,1
2 , R1,1

3 , R1
4). By strategy-proofness (for

student 2) and constrained efficiency we must have that f(R1,3) =

(
1 2 3 4

s1 s3 s4 4

)
.

Let R1,2
3 : s3, s4 and R1,4 = (R1,1

1 , R1,1
2 , R1,2

3 , R1
4). By strategy-proofness (for stu-

dent 3) and constrained efficiency we must have that f(R1,4) = f(R1,3).

Let R1,1
4 : s4, s3 and R1,5 = (R1,1

1 , R1,1
2 , R1,2

3 , R1,1
4 ). By strategy-proofness (for

student 4) we must have f4(R
1,5) ∈ {s4, 4}. Suppose that f4(R

1,5) = s4. Let R̃4 : s3, s4

and R̃ = (R1,1
1 , R1,1

2 , R1,2
3 , R̃4). If f4(R̃) = s3, 4 could manipulate f at the profile

R1,4 by submitting R̃4. Given that f4(R
1,5) = s4, strategy-proofness thus implies

f4(R̃) = s4 as well. But this contradicts the constrained efficiency of f since 4 and 2

would then form a SIC at f(R̃) and R̃. This contradiction shows that we must have

f4(R
1,5) = 4 and f(R1,5) = f(R1,3) as well.

Let R1,3
4 : s4 and R1,6 = (R1,1

1 , R1,1
2 , R1,2

3 , R1,3
4 ). By strategy-proofness we must have

f4(R
1,6) = 4. Since the top choices of the other students are compatible, constrained

efficiency implies that f(R1,6) =

(
1 2 3 4

s4 s1 s3 4

)
.

LetR1,7 = (R1,1
1 , R1

2, R
1,2
3 , R1,3

4 ). By strategy-proofness we must have that f2(R
1,7) =

s1. Stability implies that f1(R
1,7) = s4 and hence f(R1,7) = f(R1,6).

Let R1,8 = (R1,1
1 , R1

2, R
1,2
3 , R1,1

4 ). By strategy-proofness and constrained efficiency

we must have f4(R
1,8) = s3 and f3(R

1,8) = 3. Thus f(R1,8) =

(
1 2 3 4

s4 s1 3 s3

)
.

Since f2(R
1,5) = s3 and f2(R

1,8) = s1, this implies that 2 is strictly better off

reporting R1
2 rather than her true preference R1,1

2 when the other students submit

R1,1
1 , R1,2

3 , and R1,1
4 . This contradicts strategy-proofness and completes the proof of

Claim 1. �

Now let R2
1 : s2, s4, R

2
2 : s4, R

2
3 : s4, s3, s2, and R2 = (R2

1, R
2
2, R

2
3, R

1
4). Similar to

above, there are exactly two constrained efficient matchings at R2,

µ2 =

(
1 2 3 4

s2 2 s4 s3

)
and µ̄2 =

(
1 2 3 4

1 s4 s2 s3

)
.

Claim 2: f(R2) = µ̄2

Proof of Claim 2. The proof is analogous to the proof of Claim 1. One just needs

to switch the roles of 1 and 2 as well as s1 and s2 and note that at any profile in the

proof of Claim 1, school s3 is never acceptable for both 1 and 2 (and the proof only

uses the fact {1, 2} �s3 4 �s3 3 and not how students 1 and 2 are ranked under �s3).�
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Now letR3
2 : s4, s3, R

2
4 : s1, s3, s2, andR3 = (R1

1, R
3
2, R

1
3, R

2
4). Let µ3 =

(
1 2 3 4

s4 s3 s1 s2

)
.

Claim 3: f(R3) = µ3.

Proof of Claim 3. By Claim 1 we have that f(R1) = µ1. Now let R3,1
2 : s1, s4, s3 and

R3,1 = (R1
1, R

3,1
2 , R1

3, R
1
4). Since f2(R

1) = 2, strategy-proofness and stability imply

f2(R
3,1) = s3. Constrained efficiency then implies f3(R

3,1) = s1 so that f(R3,1) =(
1 2 3 4

s4 s3 s1 4

)
.

Now let R3,1
4 : s3, s1 and R3,2 = (R1

1, R
3,1
2 , R1

3, R
3,1
4 ). By strategy-proofness,

f4(R
3,2) 6= s3 so that constrained efficiency implies f(R3,2) = f(R3,1).

Let R3,2
4 : s1, s3, s2 and R3,3 = (R1

1, R
3,1
2 , R1

3, R
3,2
4 ). By strategy-proofness and

f4(R
3,2) = 4, f4(R

3,3) /∈ {s1, s3}. Thus, by constrained efficiency, f(R3,3) =

(
1 2 3 4

s4 s3 s1 s2

)
.

Let R3,1
1 : s4, s3 and R3,4 = (R3,1

1 , R3,1
2 , R1

3, R
3,2
4 ). By strategy-proofness, f1(R

3,4) =

s4 so that constrained efficiency implies f(R3,4) = f(R3,3).

Let R3,2
2 : s4, s3 and R3,5 = (R3,1

1 , R3,2
2 , R1

3, R
3,2
4 ). By strategy-proofness we must

have f2(R
3,5) = s3. Since 1 �s3 2, stability implies f1(R

3,5) = s4 and thus f(R3,5) =

f(R3,3).

Let R3,2
1 : s4 and R3,6 = (R3,2

1 , R3,2
2 , R1

3, R
3,2
4 ). By strategy-proofness, f1(R

3,6) = s4

and hence f(R3,6) = f(R3,3). Since R3,6 = R3 this proves Claim 3. �

Let R4 = (R1
1, R

3
2, R

2
3, R

2
4).

Claim 4: f3(R
4) ∈ {s3, s4}.

Proof. By Claim 2 we have that f(R2) = µ̄2. Starting from profile R2 we will

consider the following preference profiles for these students:

R4,1 R2
1 R

4,1
2 R2

3 R2
4

s2 s4 s4 s3

s4 s3 s3

s2

↓

←

R2 R2
1 R2

2 R2
3 R2

4
s2 s4 s4 s3

s4 s3

s2

R4,10 R
4,2
1 R

4,1
2 R2

3 R
4,3
4

s4 s4 s4 s1

s3 s3 s3

s2 s2

↑
R4,2 R2

1 R
4,1
2 R2

3 R
4,1
4

s2 s4 s4 s3

s4 s3 s3 s1

s2

↓

R4,9 R
4,1
1 R

4,1
2 R2

3 R
4,3
4

s4 s4 s3 s1

s3 s3 s4 s3

s2 s2

↑
R4,3 R

4,1
1 R

4,1
2 R2

3 R
4,1
4

s4 s4 s4 s3

s3 s3 s3 s1

s2

↓

→

R4,7 R
4,1
1 R

4,2
2 R2

3 R
4,1
4

s4 s4 s4 s3

s3 s1 s3 s1

s2

→

R4,8 R
4,1
1 R

4,2
2 R2

3 R
4,3
4

s4 s4 s4 s1

s3 s1 s3 s3

s2 s2

R4,4 R
4,1
1 R

4,1
2 R

4,1
3 R

4,1
4

s4 s4 s4 s3

s3 s3 s3 s1

s1

→

R4,5 R
4,1
1 R

4,1
2 R

4,1
3 R

4,2
4

s4 s4 s4 s1

s3 s3 s3 s3

s1 s2

→

R4,6 R
4,2
1 R

4,1
2 R

4,1
3 R

4,2
4

s4 s4 s4 s1

s3 s3 s3

s1 s2
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Let R4,1
2 : s4, s3 and R4,1 = (R2

1, R
4,1
2 , R2

3, R
2
4). By strategy-proofness, f2(R

4,1) = s4

so that constrained efficiency implies f(R4,1) = µ̄2

Let R4,1
4 : s3, s1 and R4,2 = (R2

1, R
4,1
2 , R2

3, R
4,1
4 ). By strategy-proofness, f4(R

4,2) =

s3 so that, by stability, f2(R
4,2) = s4 and f(R4,2) = µ̄2.

Let R4,1
1 : s4, s3 and R4,3 = (R4,1

1 , R4,1
2 , R2

3, R
4,1
4 ). By strategy-proofness, stabil-

ity, and 1 �s3 2 �s3 4 �s3 3, we must have f1(R
4,3) = s3. Constrained efficiency

then implies that either f2(R
4,3) = s4 or f3(R

4,3) = s4. We show by contradiction

that the second case is impossible. Suppose f3(R
4,3) = s4. Let R4,1

3 : s4, s3, s1 and

R4,4 = (R4,1
1 , R4,1

2 , R4,1
3 , R4,1

4 ). By strategy-proofness f3(R
4,4) = s4 so that in particular

f1(R
4,4) = s3 and f4(R

4,4) = s1. Let R4,2
4 : s1, s3, s2 and R4,5 = (R4,1

1 , R4,1
2 , R4,1

3 , R4,2
4 ).

By strategy-proofness we must have f4(R
4,5) = s1. This is compatible with stability

only if f3(R
4,5) = s4 and f1(R

4,5) = s3 so that f(R4,5) = f(R4,4). Let R4,2
1 : s4

and R4,6 = (R4,2
1 , R4,1

2 , R4,1
3 , R4,2

4 ). By strategy-proofness f1(R
4,6) = 1. But note

that R4,6 = R3 and, by Claim 3 above, f1(R
3) = s4. This is a contradiction

and hence we must have that f2(R
4,3) = s4. Constrained efficiency then implies

f(R4,3) =

(
1 2 3 4

s3 s4 s2 s1

)
.

Let R4,2
2 : s4, s1 and R4,7 = (R4,1

1 , R4,2
2 , R2

3, R
4,1
4 ). By strategy-proofness, f2(R

4,7) =

s4 so that by stability f(R4,7) = f(R4,3).

LetR4,3
4 : s4, s3, s2 andR4,8 = (R4,1

1 , R4,2
2 , R2

3, R
4,3
4 ). By strategy-proofness, f4(R

4,8) =

s1. Stability then implies f2(R
4,8) = s4 and f(R4,8) = f(R4,3).

Let R4,9 = (R4,1
1 , R4,1

2 , R2
3, R

4,3
4 ). Strategy-proofness implies f2(R

4,9) = s4 so that,

by stability, f(R4,9) = f(R4,3).

Let R4,10 = (R4,2
1 , R4,1

2 , R2
3, R

4,3
4 ) and note that R4,10 = R4. By strategy-proofness

f1(R
4) = 1. But then constrained efficiency implies f3(R

4) ∈ {s4, s3} since either

f2(R
4) = s4 or f3(R

4) = s4, and if f2(R
4) = s4 then f3(R

4) = s3. �

Combining Claim 3 and Claim 4 we see that student 3 has an incentive to

submit R2
3 when other students submit their preferences from the profile R3 since

f3(R
4)P 1

3 f3(R
3) = s1 given that f3(R

3) = s1 by Claim 3 and f3(R
4) ∈ {s3, s4} by

Claim 4. This contradicts strategy-proofness of f and completes the proof. �
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Proof of Proposition 3

We show first that no ambiguos 1-ties and no ambiguity at the top imply that O1

and O2 are satisfied. Fix some k ≤ K and i ∈ Lk. Suppose to the contrary that

there exists a specialized school s1 ∈ S1 such that rk+l(�s1) = i for some l ≥ 3.

On the other hand since i ∈ Lk there exists a specialized school s2 ∈ S1 \ {s1} such

that rk(�s2) = i. For any l′ ∈ {1, . . . , l} let il′ = rk+l′(�s2). Now if there is a

student j such that il �s1 j �s1 i we have found an ambiguous 1-tie since l ≥ 3

so that at least two distinct students rank between i and il with respect to �s2 . If

il = rk+l−1(�s1) and il−1 �s1 il we obtain a contradiction since i �s2 il−2 �s2 il−1. If

il �s1 i �s1 il−1, there has to be a student j such that il �s2 j and j �s1 il yielding

another contradiction. Hence, we must have i �s1 il. But then there has to exist a

student j such that il �s2 j and j �s1 i. No matter whether j �s1 il−1 or il−1 �s1 j
we obtain an ambiguous 1-tie. This shows that O1 has to be satisfied.

To see that O2 must be satisfied note that if O1 is satisfied we must have |L1| = 2

if |I| > 3: If |L1| = 1 we must have |I| = 1 and if |L1| = 3 we must have I = L1 since

otherwise one of the students in L1 would have to rank fourth at some specialized

school. By similar arguments we must have |L2| ∈ {1, 2} and K = 2 if |L2| = 2. Let

L1 = {1, 2}. If L2 = {3, 4} but there exist two specialized schools s1, s2 ∈ S1 such

that r3(�s1) = 1 and r3(�s2) = 2 we obtain an ambiguous 1-tie. If L2 = {3}, let 4

be one of the students in L3. Suppose there exist two specialized schools s1, s2 ∈ S1

such that r3(�s1) = 1 and r3(�s1) = 2. By O1 we must have 2 �s1 3 �s1 1 �s1 4

and 1 �s2 3 �s2 2 �s2 4. Now since 4 ∈ L3 and |L1 ∪ L2| = 3, at least one agent

in {1, 2, 3} must have lower priority than 4 for some specialized school. By O1 this

agent cannot be 1 or 2. This implies that there exists a third specialized school s3

such that {1, 2} �s3 4 �s3 3. Hence, �1 contains ambiguity at the top (with respect

to schools s1, s2, s3).

Now suppose that �1 satisfies O1 and O2. Note that if |I| > 3, we must have

|L1| = 2, |Lk| = 1, for all k ∈ {1, . . . , K − 1}, and |LK | ∈ {1, 2}. Now by O2 there

cannot be an ambiguous 1-tie involving the two students in L1 since at most one of

them can rank third. By O1 there cannot be an ambiguous 1-tie between an agent

i ∈ Lk and an agent j ∈ Lk′ for k < k′ ≤ K since i always has at least (k + 2)nd

highest priority at specialized schools. Lastly, there cannot be an ambiguous 1-tie

between two students in LK (if |LK | = 2) since only one student in LK−1 can rank in

between these two agents by O1 and O2.
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Now suppose that there exist four distinct students i1, i2, i3, i4 and three specialized

schools s1, s2, s3 such that i1 �s1 i3 �s1 i2 �s1 i4, i2 �s2 i3 �s2 i1 �s2 i4, and

{i1, i2} �s3 i4 �s3 i3. Clearly, we cannot have i1, i2 ∈ LK since this would imply

i4 ∈ L1 ∪ . . . ∪ LK−1 while i4 /∈ {r1(�s1), . . . , rK+2(�s1)}, contradicting O1. By O1,

we can also not have that i1, i2 ∈ L1 and it is easy to see that i1 and i2 cannot belong

to different Lks. This completes the proof.

�

Proof of Theorem 1

(i) Fix an arbitrary school choice problem R and let µ := fETB(R) be the matching

produced by the SDA-ETB algorithm. Let (µt)t≥1 be the sequence of temporary

assignments in the SDA-ETB. We show that there are no stable improvement

cycles (SICs) at µ and R by contradiction.

Suppose that i1, . . . , im is a SIC at µ and R, and let sl := µ(il) for all l ≤ m.

We assume in the following that the cycle is minimal in the sense that no strict

subset of students i1, . . . , im forms a SIC. Note that since sl+1Pilsl, il must

have applied to sl+1 before applying to sl in the SDA-ETB. We start with a

few preliminary observations about SICs that are summarized in the following

Lemma.

Lemma 2. (i) sl 6= sl′ for all l 6= l′.

(ii) sl ∈ S0 for at least one l ≤ m.

(iii) sl ∈ S1 for at least one l ≤ m.

Proof.

(i) It is clear that no specialized school can appear more than once on a SIC

since Ds(µ) contains at most one student if s ∈ S1. If sl = sl′ = s ∈ S0,

i1, . . . , il−1, il′ , . . . , im is a SIC of smaller size which contradicts the assumed

minimality of the cycle.

(ii) Suppose to the contrary that {s1, . . . , sm} ⊆ S1 and let t1 be the first

round of the SDA-ETB (under R)16 in which a student il is rejected by

sl+1. But then, there must be a student j ∈ µt1(sl+1) \ µ(sl+1) such that

j �sl+1
il. Since sl+1 ∈ S1, this implies that il /∈ Dsl+1

(µ); contradiction.

16This qualifying statement will henceforth be omitted and we will speak of the SDA-ETB. There
is no ambiguity involved here since the problem R is fixed throughout.
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(iii) Suppose to the contrary that {s1, . . . , sm} ⊆ S0.

Consider first the case |I| ≤ p and note that m ≥ 2. Again, let t1 be the

first round of the SDA-ETB in which a student il is rejected by sl+1. If

there was a specialized school s ∈ S1 such that |µt1(s)| = q1, there could

not have been a round t′ > t1 in which a student il′ 6= il was rejected

by sl′+1 given |I| ≤ p; contradiction. Now let t′′ > t1 be some round

of the SDA-ETB in which a student il′ 6= il is rejected by sl′+1. Since

|µt′′(sl+1)| ≥ qsl+1
and |µt′′(sl′+1)| > qsl′+1, there could not have been a

specialized school s ∈ S1 such that |µt′′(s)| = qs given that |I| ≤ p. This

implies that all rejections by non-specialized schools on the SIC were based

on the labeling of students so that i1 > i2 > . . . > im > i1
17; contradiction.

If |I| > p note that the construction of �0 and the just completed argument

imply that no student on the SIC belongs to the upper segment L1 ∪ . . .∪
Lp−2. Furthermore, the cycle cannot consist exclusively of students who

are strictly ordered according to �0. This implies that the only remaining

possibility for a SIC consisting only of non-specialized schools is m = 2

and i1, i2 ∈ LK . The proof is completed by noting that, by construction

of �0, no student in LK can cause a student in Lk to be rejected by a

non-specialized school for all k < K.

�

Now consider the case of |I| ≤ p. By Lemma 1 we can assume w.l.o.g. that

s1 ∈ S0 and s2 ∈ S1. Since |I| ≤ p, we must have m ≤ 3. Suppose first that

m = 3 and that s3 ∈ S1 so that s1 is the only non-specialized school on the

SIC. Note that i3 must have been rejected by s1 before i2 was rejected by s3:

Otherwise i2 /∈ Ds3(µ) since at least one higher priority student must have been

rejected by s3 in the course of SDA-ETB. Similarly, i2 must have been rejected

by s3 before i1 was rejected by s2. But this implies that at the point where i1

was supposedly rejected by s2, at least q0
(1) students were temporarily matched

to s1 and q1 students were temporarily matched to s3. Since |I| ≤ p, i1 could

not have been rejected by s2; contradiction. Now suppose that s3 ∈ S0. As

in the previous case, i2 must have been rejected by s3 before i1 was rejected

by s2. This implies that there is a round t of SDA-ETB such that i2 ∈ µt(s3),

µt(i1)Ri1s2, and s3Pi2µ
t+1(i2). Now in some round t′ > t, i1 must have been

17Remember that we identify students with their labels.
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rejected by s2. If s1Pi3µ
t′(i3), we obtain an immediate contradiction since at

the point were i1 was supposedly rejected by s2, at least q0
(1) +q0

(2) students must

have been matched to s1 and s3 so that there could not have been q1 students

apart from i1 applying to s2 in round t′. If µt
′
(i3)Ri3s1, we similarly obtain a

contradiction to the assumption that i3 was rejected by s1 in some later round

of SDA-ETB. Hence, we must have m = 2. As in the previous cases, i2 must

have been rejected by s1 before i1 was rejected by s2. This implies that there is

a round t of the SDA-ETB such that i2 ∈ µt(s1), µ
t(i1)Ri1s2, and s1Pi2µ

t+1(i2).

If µt(i1)Pi1s2, i1 could not have been rejected by µt(i1) and s2 in subsequent

rounds of SDA-ETB given that |I| ≤ p. Hence, we must have µt(i1) = s2 by

strict preferences. If i1 /∈ µt+1(s2), it has to be the case that µt(s1) �s2 i1 since

i2 would not have been rejected in TB(µt) otherwise. But then i1 could not

have subsequently obtained a place at s1; contradiction. If i1 ∈ µt+1(s2), there

must be a student j ∈ µ(s2) such that µt(j)Pjs2. If µt(j) 6= s1, let t′ be the

round where j was rejected by µt(j). Given |I| ≤ p, there cannot be a round

t′′ > t′ in which i1 was rejected by s2. But then i2 must have been rejected

by s2 before round t′ so that in particular i2 /∈ Ds2(µ); contradiction. Hence,

we must have µt(j) = s1 for any j ∈ µ(s2) such that µt(j)Pjs2. Iterating this

argument it is easy to see that there must be a round t′ > t of SDA-ETB such

that |µt′(s2)| = q1, i1 ∈ µt
′
(s2), |µt

′
(s1)| ≥ qs1 + 1, and µt

′
(s1) �s2 i1. But then

i1 could not have obtained a place at s1 subsequently to being rejected by s2;

contradiction.

Now we consider the case that |I| > p. Note that we can assume w.l.o.g.

that i1 is the student with the lowest label among all students on the SIC. We

distinguish two subcases.

Case 1: i1 ≥ p.

We assume for now that |LK | = 2. It will become clear from our arguments

that there cannot be SIC in case |LK | = 1 either.

If s2 ∈ S0, we must have i1, i2 ∈ LK by the construction of �0 and the

assumption that p ≤ i1 < i2. This implies in particular that L = 2,

i1 = K + 1, i2 = K + 2, and s1 ∈ S1. By exogenous tie-breaking in the

SDA-ETB at most qs2−1 students with lower labels than K+1 could have

applied to s2. If more than q1 − 1 students with lower labels than K + 1

applied to s1, stability of µ and limited p-variability imply that K must
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have been rejected by s1 in the SDA-ETB and K + 1 �s1 K �s1 K + 2.

But then we cannot have that K + 2 ∈ Ds1(µ). Hence, at most q1 − 1

students with lower labels than K + 1 could have applied to s1. But then

SDA-ETB would have assigned K+1 to s2 and K+2 to s1; contradiction.

Hence, we must have s2 ∈ S1.

Now suppose that s2 ∈ S1 and i2 = i1 + 2. Since s2 ∈ S1, the stability

of µ w.r.t. �1 and limited p-variability imply that i1 = K, i2 = K + 2,

and K + 2 �s2 K. If m = 2 we must have s1 ∈ S0 by Lemma 1. Given

exogenous tie-breaking in the SDA-ETB and µ(K) = s1, at most qs1 − 1

students with labels lower than K could have applied to s1. As above, K+2

must have been rejected by s1 before K was rejected by s2. It is easy to see

that we obtain a contradiction unless K+1 applied to s1 in the SDA-ETB.

Since ties in the lower segment are broken last, this implies that there is

a round t of the SDA-ETB procedure such that {K + 1, K + 2} ⊂ µt(s1)

and i1 ∈ µt(s2). Since K + 2 �s2 K by the stability of µ, we must have

K �s2 K+1 by limited p-variability. But then K+1, and not K+2, would

have been rejected by s1. Since there are no further rejections after tie-

breaking in the lower segment this is a contradiction. If m = 3, i3 = K+ 1

(this is the only possibility given the definition of i1), and s3 ∈ S0, i2

must have been rejected by s3 before i1 was rejected by s2. Suppose first

that s1 ∈ S0. By exogenous tie-breaking in the SDA-ETB and limited

p-variability at most qs1 − 1 students with lower labels than K could have

applied to s1. Similarly, at most qs3 − 1 lower labeled students could have

applied to s3. Furthermore, it cannot be the case that s1PK+2s3 since there

would be a SIC of size 2 otherwise. But then neither i3 nor i2 would have

been rejected by s1 and s3, respectively; contradiction. If s1 ∈ S1, it is

easy to see that there must have been a round t of the SDA-ETB such that

{i2, i3} ⊂ µt(s3) and i1 ∈ µt(s2). But then, i2 would not have been rejected

by s3 since i2 �s2 i1 �s2 i3 given the stability of µ and limited p-variability.

An analogous argument can be used to show that m = 3, i3 = K + 1, and

s3 ∈ S1 is also impossible. Hence, we must have i2 = i1 + 1.

Now suppose we have shown that, for some l ≤ m, il′ = il′−1 + 1 and

sl′ ∈ S1, for all l′ ∈ {2, . . . , l}. We now establish that m > l, il+1 = il + 1,

and sl+1 ∈ S1. This inductive argument completes the proof since it

contradicts the finiteness of the set of students.
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Suppose first that m = l. Since there has to be at least one non-specialized

school on the SIC by Lemma 1, we must have s1 ∈ S0. Note that it has to

be the case that im ∈ {K + 1, K + 2}. Otherwise we could use exactly the

same argument used to establish that a SIC cannot contain only specialized

schools to derive a contradiction since we assumed i1 ≥ p − 1. Suppose

first that im = K + 1 so that im−1 = K. By minimality of the cycle, we

must have sl+1Pils1 for all l < m. Furthermore, at most qs1 − 1 students

indexed lower than i1 could have applied to s1 by exogenous tie-breaking

in the SDA-ETB. Since all schools except s1 are specialized, im must have

been rejected by s1 before il was rejected by sl+1 for all l ≤ m−1. Similar

to above this implies that there must have been a round t of SDA-ETB

such that {K + 1, K + 2} ⊂ µt(s1) and K ∈ µt(sm). By stability of µ

and limited p-variability, we must have K + 1 �sm K �sm K + 2. This

implies again that K + 2, and not K + 1, would have been rejected by s1.

Since there are no rejections after tie-breaking in the lower segment this

is a contradiction. If im = K + 2, we obtain an immediate contradiction

since it is easy to see that the minimality of the cycle implies that at most

qs1 − 1 other students could have applied to s1 in the SDA-ETB. Hence,

im could not have been rejected by s1 in the SDA-ETB; contradiction.

The proofs that sl+1 ∈ S1 and il+1 = il + 1 are virtually identical to the

proofs that s2 ∈ S1 and i2 = i1 + 1. The details are omitted.

Case 2: i1 < p.

Note first that there has to exist an l ≤ m − 1 such that il = p − 1

and il+1 ∈ Lp−1 ∪ . . . ∪ LK . Otherwise, the SIC would consist entirely of

students in L1∪ . . .∪Lp−2. The proof that this is impossible is completely

analogous to the proof for the case of |I| ≤ p.

Hence, there has to exist an index l with the above mentioned properties.

Note that in particular sl+1 ∈ S1 since il cannot envy a student in Lp−1

for a non-specialized school. Furthermore, by limited p-variability il+1 is

the only student in Lp−1 ∪ . . . ∪ LK who can rank higher at sl+1 than il.

This implies |µ(sl+1)∩ (L1∪ . . .∪Lp−2)| = q1− 1. For all l′ ∈ {2, . . . , l} we

must have µ(sl) ⊂ L1 ∪ . . .∪Lp−1 and |µ(sl)| = qsl
. Now note that |I| > p

implies |L1 ∪ . . . ∪ Lp−2| = p− 1 so that we must have l ≤ 2.

Now let l ≤ 2, il = p − 1 and il+1 ∈ Lp−1. Note that there cannot be

an l < l′ ≤ m such that il′ ∈ L1 ∪ . . . ∪ Lp−2: Otherwise, we would have
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that {il′ , . . . , im} ⊂ L1 ∪ . . . ∪ Lp−2. If l = 1, this yields a contradiction

to the assumption that i1 was the lowest labeled agent on the SIC. If

l = 2, we would have that µ(sl′+1) ∪ . . . ∪ µ(s1) ⊂ L1 ∪ . . . ∪ Lp−2. Since

|µ(sl+1)∩(L1∪. . .∪Lp−2)| = q1−1, this contradicts |L1∪. . .∪Lp−2| = p−1.

By construction of �0 and limited p-variability, we must thus have il′+1 =

il′ + 1 for all l′ ∈ {l, . . . ,m − 3}, and {sl+1, . . . , sm−1} ⊂ S1. If sm ∈ S0,

it has to be the case that {im−1, im} = LK . As above, im−1 must have

been rejected by sm before im−2 = K was rejected by sm−1 ∈ S1. Since we

break ties in the lower segment last and im ∈ µ(sm), there must have been a

round t of the SDA-ETB such that {im−1, im} ⊂ µt(sm), |µt(sm)| = qsm +1,

and im−2 ∈ µt(sm−1). But then im−1 could not have been rejected by sm;

contradiction. Hence, we must have {sl+1, . . . , sm} ⊂ S1.

Now suppose that l = 2, s1 ∈ S1, and s2 ∈ S0. It has to be the case that i1

was rejected by s2 before il was rejected by sl+1 for all l ∈ {2, . . . , L}. Let

t be the round of SDA-ETB in which i1 was rejected by s2 and let t′ > t be

the round of SDA-ETB in which i2 applied to s2. By limited p-variability

we must have |µt′(s3) ∩ (L1 ∪ . . . ∪ Lp−2)| ≥ q1 − 1 and since t′ > t it has

to be the case that µt
′
(s2) \ {i2} ⊂ L1 ∪ . . .∪Lp−2, |µt

′
(s2)| ≥ q0

(1) + 1, and

i1 /∈ µt
′
(s3) ∪ µt

′
(s2). But since |L1 ∪ . . . ∪ Lp−2| = p− 1, there cannot be

a specialized school s ∈ S1 \ {s3} such that µt
′
(s) ⊂ L1 ∪ . . . ∪ Lp−2 and

|µt′(s)| = q1. Since i2 is the highest indexed student in the upper segment,

she could not have obtained a place at s2; contradiction. Next, consider

the case s1 ∈ S0, s2 ∈ S1. As above, im must have been rejected by s1

before il was rejected by sl+1 for all l ≤ m− 1. Let t be the round of the

SDA-ETB in which im was rejected by s1. If µt(s1) ⊂ L1 ∪ . . . ∪ Lp−2,

it is easy to see that i1 could not have been rejected by s2 given that

|L1∪. . .∪Lp−2| = p−1 since i2 must have been rejected by s3 in some earlier

round. By minimality of the cycle, we must have slPils1 for all l 6= m. This

implies that there is an agent j ∈ I \ (L1 ∪ . . . ∪ Lp−2 ∪ {i1, . . . , im}) such

that µt+1(j) = µt(j) = s1. Given the above the only possibility is that

{im, j} = LK . Since ties in the lower segment are broken last, we must

have µt(im−1) = sm. As usual, stability and limited p-variability imply that

im would not have been rejected by s1; contradiction. The only remaining

case to consider for l = 2 is s1, s2 ∈ S0. Here, im must have been rejected

by s1 in particular before i2 was rejected by s3. If i1 was rejected by s2
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before i2 was rejected by s3, i2 could not have been rejected by s3 in a

subsequent round. If i2 was rejected by s3 before i1 was rejected by s2, i1

could not have been rejected by s2 in a subsequent round. The details are

similar to the previous cases and omitted.

Thus, the only remaining case is l = 1 and s1 ∈ S0 (by Lemma 1). As

usual, im must have been rejected by s1 before il was rejected by sl+1 for

all l ≤ m − 1. Similar to the proof that l = 2, s1 ∈ S0, s2 ∈ S1, we can

show that if t is the round in which im was rejected by s1 we must have

µt(s1) \ {im} ⊂ L1∪ . . .∪Lp−2. If t′ > t is the round in which i1 is rejected

by s2, we must have |µt′(s2)∩ (L1∪ . . .∪Lp−2)| = q1−1. Since |I| ≤ p−1,

this implies that if t′′ > t′ denotes the round of SDA-ETB in which i2

applies to s1, we must have µt
′′
(s1) ⊂ L1 ∪ . . . ∪ Lp−2 and there could not

have been a specialized school s 6= s2 such that µt
′′
(s2) ⊂ L1 ∪ . . . ∪ Lp−2

and |µt′′(s2)| = q1. But then i2 could not have obtained a place at s2;

contradiction.

(ii) We first consider the case |I| ≤ p. Let i ∈ I be a student and Ri be an

arbitrary strict preference relation for this student. Let topj(Ri) be the jth most

preferred school according to Ri if Ri contains at least j acceptable schools, and

topj(Ri) = i if Ri contains less than j acceptable schools.

Note that if fETBi (R) /∈ {top(Ri), top2(Ri), top3(Ri)} for some i ∈ I, student i

cannot manipulate at the profile R:18 Let s1 = top(Ri), s2 = top2(Ri), and s3 =

top3(Ri). Given that |I| ≤ p, we must have s1, s2, s3 ∈ S0 and any specialized

school s must have at least qs1 + qs2 + qs3 free places in the matching fETB(R).

But then, no matter which preference relation i submits, no specialized school

can ever fill its capacity. By the rules of the tie-breaking subroutine, tie-breaking

decisions will thus always be based on the (fixed) labels of students. By strategy-

proofness of the SDA for fixed tie-breaking rules, i cannot manipulate the SDA-

ETB.

Now consider a profileR and a student i such that fETBi (R) ∈ {top2(Ri), top3(Ri)}.
Suppose there was an alternative report R′i for i such that fETBi (R′i, R−i) =

top(Ri) =: s1. Let s2 := top(R′i) and note that we must have s1 6= s2. Denote

by (µt)t≥1 and (µ̃t)t≥1 the sequences of temporary assignments of the SDA-ETB

18It is obvious that the SDA-ETB never assigns a student to an unacceptable school. This implies
in particular that {top(Ri), top2(Ri), top3(Ri)} ⊂ S in the above situation.
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under R and R′, respectively. Let t1 be the round of the SDA-ETB under R in

which i is rejected by s1 and let t2 be the round of the SDA-ETB under R′ in

which i is rejected by s2. Consider first the case s1 ∈ S0 and s2 ∈ S1. We must

have |µt1(s1)| = qs1 + l for some l ≥ 1. If there was a specialized school s such

that |µt1(s)| = qs, it would have to be the case that |µt(s2)| ≤ qs2 − l. But this

would imply that in the SDA-ETB under R no student is ever rejected by s2,

so that fETBi (R′) = s2. Continuing this line of reasoning it is easy to see that

all tie-breaking decisions in the SDA-ETB under R must have been made con-

ditional on the fixed labeling of students and no specialized school could have

rejected any student in the course of this algorithm. But the same statements

must hold for the SDA-ETB under R′ since i was rejected by s1 in the SDA-

ETB under R. Now there must be at least qs1 students with lower labels than

i who applied to s1 in the SDA-ETB under R. But all of these students will

apply to s1 in the SDA-ETB under R′ given the above so that i cannot obtain

a place at s1. Next, consider the case s1 ∈ S0 and s2 ∈ S1. Note that if t2 = 1,

i cannot end up matched to s1 in the SDA-ETB under R′ if top2(R
′
i) = s1 since

there must be a round of this procedure in which the temporary assignment is

exactly the same as in round t1 of the SDA-ETB under R. If top2(R
′
i) 6= s1,

we must have fETBi (R′) = top2(R
′
i) given |I| ≤ p. Thus, t2 > 1 and there has

to be a school s 6= s2 that has to reject a student in some round t < t2 of the

SDA-ETB under R′. If s 6= s1, s1 could not have rejected any student in the

SDA-ETB under R and R′ given that |I| ≤ p which contradicts fETBi (R) 6= s1.

Hence, s = s1 and we must have |µ̃t2(s1)| > qs1 . But then subroutine TB(µ̃t2)

ensures that all students in µ̃t2(s1) have higher priority for s2 than i and that

i could not have obtained a place at s1 in one of the subsequent rounds. Now

suppose s1 ∈ S1 and note that i could not obtain s1 by any misrepresentation

if µ1(i) 6= s1. Hence, there must be school s 6= s1 that had to reject at least one

student prior to t1. Since |I| ≤ p, i is matched to top(R′i) if top(R′i) ∈ S\{s1, s}.
Hence, we must have s = s2 and s1, s2 are the only schools who had to reject

a student in the SDA-ETB under R′. If s2 ∈ S1 and fETBi (R′) = s1, i could

also manipulate if s1 and s2 were the only schools available. This contradicts

strategy-proofness of the SDA when S0 = ∅. So suppose that s2 ∈ S0. Since

i was rejected subsequently to a rejection at s2 in the SDA-ETB under R, all

students in µt1(s2) must have had higher priority for s1 than i. This implies

that in the SDA-ETB under R′ ultimately the same set of students will be re-
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jected by s2 as in the SDA-ETB under R. Since all students who have applied

to s1 prior to t1 in the SDA-ETB under R also apply to s1 in some round of the

SDA-ETB under R′, we cannot have fETBi (R′) = s1.

It remains to be shown that i cannot obtain top2(Ri) if fETBi (R) = top3(Ri).

Given |I| ≤ p, it is easy to see that the only potentially profitable manipulation

is for i to rank top2(Ri) first. The proof can be completed using a similar case

distinction as above and the details are omitted.

Next, we prove the statement for the case of |I| ≥ p+1. Note first that students

outside the upper segment L1 ∪ . . . ∪ Lp−2 cannot influence tie breaking in the

upper segment. To see this note that the only possible effect such a student

could have on this tie-breaking decision is to initiate a rejection chain leading

to the rejection of the student indexed p − 1 by some specialized school s.

Since there cannot be more than one student from Lp−1 who has higher priority

for s than p − 1, this implies that there are q1 − 1 students from the upper

segment temporarily matched to s. Now remember that we only use temporary

assignments for tie-breaking in the upper segment if some specialized school

has filled all of its places with students from the upper segment. But if p − 1

is temporarily matched to some specialized school s′ ∈ S1 \ {s} together with

q1−1 other students from the upper segment, no student from the upper segment

is rejected by a non-specialized school given that |I| ≤ p.19 The proof that no

student in the upper segment can manipulate tie-breaking in the upper segment

to her benefit is completely analogous to the proof for the case of |I| ≤ p and

the details are omitted.

It remains to be shown that no student can profitable manipulate the tie-

breaking decision in the lower segment. In particular, the proof is complete

unless |LK | = 2. Now note that the endogenous tie-breaking of the SDA-ETB

in the lower segment ensures that there are no additional rejections after the

tie-breaking stage since (i) only student K can ever rank lower than one of

K + 1 and K + 2, and (ii) K cannot rank below both of these students at some

specialized school. Hence, a student can profitably manipulate tie-breaking in

the lower segment only if she obtains a better school prior to tie-breaking. Now

suppose that contrary to what we want to show some student i can profitably

19It is precisely at this point where we need that the upper segment contains p− 1 students and
not p students if |I| ≥ p+ 1.
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manipulate the tie-breaking procedure when the profile of (true) preferences is

R by submitting R′i. Note that it has to be the case that the tie between K + 1

and K + 2 needs to be broken endogenously under R and R′ = (R′i, R−i): Oth-

erwise we could use the same strict priority structure under R and R′ so that

we obtain a contradiction to the strategy-proofness of SDA for a fixed strict

priority structure. This already implies that neither K + 1 nor K + 2 can ma-

nipulate the SDA-ETB procedure to their benefit. Let s and s′ be the schools

to which K + 1 and K + 2 are temporarily matched before tie-breaking in the

lower segment under R and R′, respectively. By the exogenous tie-breaking of

the SDA-ETB exactly qs − 1 students in I \ {K + 1, K + 2} apply to s in the

course of SDA-ETB under R and exactly qs′ − 1 students in I \ {K + 1, K + 2}
apply to s′ in the course of SDA-ETB under R′. Note that s = s′ unless i

applies to s′ (prior to tie-breaking) under R′i but not under Ri. Since there are

no rejections after tie-breaking in the lower segment, s 6= s′ would imply that

s′ = fETBi (R′) and thus s = fETBi (R)Rif
ETB
i (R′) = s′. So we may assume that

s = s′. But then we would obtain the same final matching for students outside

the lower segment (under both R and R′), if we assumed (contrary to fact) that

s could admit qs + 1 students and has a strict priority ranking of students (by

arbitrarily breaking the remaining ties in �0). This is again a contradiction to

strategy-proofness of the SDA for a fixed strict priority structure and completes

the proof.

�
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