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Abstract

We study optimal bidder collusion at first-price auctions when the
collusive mechanism only relies on signals about bidders’ valuations.
We build on Fang and Morris (2006) when two bidders have low or
high private valuation of a single object and additionally receive a
private noisy signal from an incentiveless center about their opponents’
valuations.

We investigate the general case when the signals are chosen con-
ditionally independently and identically out of n > 2 possible values.
We demonstrate a symmetric equilibrium of the first price auction
with public or private signals. We characterize the signal structure
which provides the least revenue for the seller for arbitrary n. As a
corollary, we show that bidders are strictly better off as signals can
take on more and more possible values. Nevertheless, we provide an
example which shows that the seller’s revenue drops below the above
optima even with only 2, but correlated signals.

Finally, we show that in case the center does not know the bidders’
valuations, bidders have no incentives to report their types truthfully
to the center. As a corollary: no collusive cheap talk equilibrium ex-
ists. In this sense the first price auction turns out to be collusion-proof.
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1 Introduction

In a standard IPV, first price auction it is assumed that each bidder observes
her own valuation and has no information about her opponent’s valuation
except for the distribution from which it is drawn. However, for collusive pur-
poses, bidders may agree and commit to a mechanism which provides them
noisy information about each others’ valuation.! Or there can exists an in-
centive compatible mechanism under which bidders may share information.
With such multidimensional information bidders could improve their posi-
tion against the seller and expect higher payoffs than with one-dimensional
information only about their own valuation.? Fang and Morris (2006), Berge-
mann and Vélliméaki (2006) and Kim and Che (2004) are examples when the
revenue equivalence of standard one-dimensional symmetric IPV auctions
breaks down in the presence of such a signal mechanism. Our goal is to
examine the extent to which bidders can improve their payoffs in a one-shot
first price auction when they have access to such mechanisms.

Hence, we assume that two bidders have access to a center, an incen-
tiveless third party which knows the realized valuation profile and can send
random private or public signals to the bidders.® Thus, for a moment, we
abstract away from the adverse selection problem, when bidders may not
tell their true valuations to the center. We relax this assumption later and
show how the center can or cannot elicit the necessary information from
the bidders. Among others McAfee and McMillan (1992) and Marshall and
Marx (2007) investigate optimal collusion with adverse selection. However,
they allow the center to enforce side-payments and/or to enforce bids which
may depend on the reports about the valuations.* We consider a one-shot
auction, where there are no transfers and bids cannot be enforced by the
center. That is, after learning their valuations and the signal sent by the
center, bidders bid as they want. We concentrate on the question: what is
the bidders’ optimal signal structure that the center should use to increase

! Collusion in auctions has been investigated in many possible setups: repeated auction,
costly bidding, resale, bribing etc.

2We assume, that the seller’s behavior is passive. It is clear, that such behavior on the
part of the seller is not the best response against a collusion. Therefore, we assume that
the seller either does not know that the bidders have access to extra signals or is bound
to the rules of the auction by law.

3Forges (2006) names such a center as an omniscient mediator.

4We elaborate on the connection between these papers and ours in the discussion.



bidders’ payoffs?®

We show that in a first price auction with two bidders the collusive mech-
anism is better, the larger the variety of the noisy signals that bidders receive
about the opponent’s valuation.

We consider the simplest setup, where two bidders valuations are inde-
pendently drawn from two possible valuation types {V;, V},} and each bidder
receives an extra signal, called information type, about the opponent’s valu-
ation. When the signal can only take values L or H, Fang and Morris (2006)
show that, in the unique symmetric equilibrium, the seller expects less rev-
enue in the first price than in the second price auction and both auctions
allocate the object efficiently. We show that the revenue gap between the
two auctions increases in the number of possible values the signals can take
on. For example, if the signal can take on values from the set {L, M, H} the
equilibrium payoff of bidder is larger compared to the 2-valued signal case.
Intuitively, it is clear that if the signal probabilities are chosen optimally
more possible values can do no harm to the bidders, however it is ambiguous
whether adding a new possible value strictly helps the bidders or not. We
answer this question analytically when signals are drawn independently and
identically for the bidders. We give a constructive method how to embed a
new value into any given finite-valued signal structure in a way that bidder’s
payoff increases. However, an example with 2-valued but correlated signals is
provided which outperforms the numerically calculated n—valued indepen-
dent signal case for any large n. Finally, we characterize some important
features of the optimal signal structure for arbitrary n—valued independent
signal.

Finally, we address the question whether bidders can share information
about their own valuation in an incentive compatible manner. We ask the
question whether the bidders are willing to report truthfully their valuation
to the center, who in turn gives hints (signals) to the bidders how to bid. The
answer is negative. We show that the high type bidder always has incentive
to lie and induce his opponent to bid less aggressively. We can interpret
this result as an evidence for the first price auction being collusion proof.
In particular, our result implies that bidders cannot share information in an
equilibrium by using plain, unmediated cheap talk messages.

SSeveral papers (Bergemann and Pesendorfer, 2007; Esé and Szentes, 2007) investigate
the same question from the seller’s point of view. That is, how should the seller optimally
disclose information about valuations.



Our results also complement the industrial organization literature on
trade associations. It has been recognized that trade associations, through
information sharing, can serve as collusion facilitating devices. (See, for
example, Vives (1990) and the references in his Section 2.) For example,
Genesove and Mullin (1997) provide an interesting case study of the work-
ings of the Sugar Institute, the trade association uniting the U.S. domestic
sugar refiners from 1928 to 1936. They describe how the Sugar Institute col-
lected, aggregated and disseminated the data about the industry among its
members, focusing in particular on the incentive issues. One of their findings
is that “the Sugar Institute revealed less information to its members than it
knew”.% This conforms with our result that revealing noisy (public) informa-
tion about the opponent’s valuation increases each bidder’s expected payoft.
On the other hand, another finding by Genesove and Mullin (1997) that
the Institute members did not misreport their private information cannot
be explained within our framework. Our results indicate that other factors
like auditing of accounting records must have played an important role in
inducing honest revelation of information.

The paper unfolds as follows. In section 2, we set up the model. In section
3, we prove the existence of a symmetric equilibrium with private signals. In
section 4, we state the theorem, calculate the optimal signal structure for 2-
valued private signals and show how to improve bidders payoff when a third
value is introduced. In Section 5 we present similar results for the public
signal case. In Section 6, we show that no credible communication is possible
between the bidders even if they have access to a third party. In Section 7, we
present the 2-valued correlated signal case, provide some conjectures which
we were unable to prove and argue that the first price auction may not be
collusion-proof if we relax the bidders incentive constraints in an intuitive
manner. Some proofs are relegated to the Appendix.

2 The Model

Two bidders, 1 and 2, compete for an object. When we refer to a generic
bidder we use she and we do not index the notation if it does not cause
confusion. Bidders’ valuations of the object are private and independently
drawn from identical distributions. We assume that bidder’s valuation of the

6Genesove and Mullin (1997), p. 20.



object takes on two possible values {V;, V},}, where we set V; = 0,V}, = 1.7
The ex ante probability that a bidder’s valuation v takes value V; is denoted
by p € (0,1). Of course, the probability of V}, is 1 — p.

As in standard private value auction models, bidders observe their own
private valuation v. Fang and Morris (2006) assumes that each bidder also
privately observes a noisy signal s about her opponent’s valuation. For
tractability, they assume that the noisy signal can take on only two pos-
sible qualitative categories s € {L, H}.® The novel feature of this paper is
that signals can take on values from the set n = {1,2,...,n}, and we also
consider the case when bidders publicly observe the signals. Bidder 1’s signal
s1 € n about 2’s valuation v, is generated as follows. For all j € n

Pr(sy =j|va=V)) = Zyj, Pr(s; =j | vy = V3) =Yj-

Bidder 2 receives sy about v; identically and independently of s;. To sum
up, when signals are sent privately bidder 1’s type is a 2-tuple (vy, 1), where
vy is bidder 1’s valuation and s; is the signal about 2’s valuation. In the
case when signals are public, bidder 1’s type is a 3-tuple (vy, s1, s2), where
vy is bidder 1’s valuation, s; is the signal about 2’s valuation and sy is the
signal about bidder 1’s own valuation. Of course, Z]En = ZjEn y; = 1,
0<z;<1l,and 0 < y; <1forall j €n Wecall (z, y) = (2},Y)jen &
private or public signal structure. We assume that there is no j € n such
that z; = y; = 0. That is, each signal j € n has ex ante positive probability
to appear, otherwise we are back to the case with less signals. Without loss
of generality we assume that

A, s

Y1 Y2 Yn
If this relationship is not satisfied, we can always rename the signals. That
is, we can always name the signal with the highest ratio as 1, and so on.”
We prove later that if % = z]“ for some j then signals j and j + 1 can
be considered as one smgle 81gjnal with probabilities z;; = z; + 41, Yy
Y; + yj+1 and the corresponding symmetric equilibria are the same in terms
of the payoffs. Therefore, we will maintain these assumptions for the rest of

the paper.

"All results extend in the obvious way for any 0 < V; < Vj,.

8In their set up, bidders may have 3 possible valuations. In this case, dealing with
3-valued signals is indeed untractable.

°If y; = 0 then we set 2 = oo.



3 An Equilibrium with Private Signals

First, we are interested in a symmetric Bayesian Nash equilibrium of the
first price auction with zero reserve price,'® where bidders simultaneously
submit bids b depending on the realization of v and s. The highest bidder
gets the object and pays her bid to the seller. In the event of a tie, the bidder
with higher valuation gets the object and the tie-breaking can be arbitrary
if bidders’ valuations are the same.!!

Proposition 1 2 A symmetric equilibrium of the first price auction with pri-
vate signal structure (z,y), is as follows:

1. Bidder of type (v,s) = (0, ) bids 0, for any j € n. Let by = 0.

2. Bidder of type (v,s) = (1,1) bids 0 if y1 = 0, otherwise she randomizes
over [bo, bl] according to the cumulative distribution function

b b
Fy (b) =
1) (I-p)yi1 -0
where B .
by =1— b

pr1+(1—p)yi

3. Bidder of type (v,s) = (1,7), for j = 2,...,n, randomizes over [l_)j,l, Z_)j]
according to the cumulative distribution function

pxj—i—( )yJZk 1 Ukb—bj
F;(b) = , 1
where i
_ (1 =p)y, ST _

pri+ (1 —=p)y; >0, s

Since in equilibrium types (0, j) bid 0 we suppress j and refer to them as
type v = 0. For types (1, 7) we refer as type s = j.

10The assumption of zero reserve price is made purely for simplicity, and all subsequent
results extend in the natural way if a binding reserve price is introduced.

UFor the justification of this tie-breaking rule see Kim and Che (2004), Fang and Morris
(2006) and Maskin and Riley (2000).

12 A1l the major proofs are relegated to the Appendix.
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Remark 1 If for some j € n,a;—j = % then j and j + 1 have the same
expected payoff for any bid in [bj_1,bj11]. Moreover, it is easy to see that if
we replace signals j and j+1 with j' having probabilities vy = x;+xj11,y; =
Y;j+yjp1 then in the corresponding equilibrium with n—1 signals it is true that
bjr = bj11 and the strategies of types different from j' do not change. This
shows that our original assumption with strict inequalities is indeed without

loss of generality.

4 A Theorem for Private Signal Structures

Type 0 obtains zero expected payoff and type j € n obtains expected payoft:

K o) = P S (1) )

Thus, each bidder’s ex ante expected payoff is:

P(z,y) = (1=p) Y (px; + (1 = p)y) K (4, (z,9)).

JjEN

Definition 1 Given n, a signal structure (x,y), is optimal for the bidders
if it mazimizes P(x,y).

Remark 2 For any n > 2 there exists an optimal signal structure.

Example 1 Letn =2 and x1 =y, = q and x9 = y; = 1 — q. That is, when
signal 1 1s equally indicative of value Vi as signal 2 is of value V. Then the
equilibrium described in Proposition 1 is the same as in Proposition 1 of Fang
and Morris (2006). They show that among these special signal structures
there is an optimal q which minimizes the seller’s revenue. However, this
signal structure cannot be optimal for any q € [0,1] for the bidders. Indeed,
the expected payoff of bidder when there are 2 signals is

pxz+(1—p)yzy1>
P(x, = (1—p)pri |1+
w9 = (=i (14 P LD

1 p+(1—p)n
pri+ (1 —p)yi

= (L—-ppz



The first order condition w.r.t. xy s

p(L—p) g p+(1—p)y)
(pz1 + (1 —p)y3)?

Y

which is strictly positive if y; > 0.13 Therefore, it is optimal to set x; = 1.
The first order condition w.r.t. y, is

—((1=pyi+p)’+pp+(1—p) z)
(pr1 + (1 —p) y?)°

(1—p)px

Y

which when set equal to 0 and imposing x1 = 1 implies that

_ P
1+ D

The second deriwative w.r.t. y; 18 negative when evaluated at the optimal
value of y1. This indicates that, if signals can take on 2 different values,
1 = Yo = q and xo = y; = 1 — q does not hold under the optimal signal
structure.

Bidder’s payoff, given the optimal signal structure, is

oy )

2

1

For example, when p = 0.25, bidder’s ex ante payoff is 0.2813, while the
seller’s revenue is 0.3750. For comparison, Fang and Morris (2006) show
that q that minimizes the seller’s revenue s 0.7639, which results in the
bidder’s payoff of 0.2628, and the seller’s revenue of 0.4119.

Theorem 1 An extra signal improves the bidder’s optimal payoff:

P((z,y)n) < P((2,4)540)-

See the proof in the Appendix. To prove the theorem we take an arbitrary
(,y)n and we show that if z,, > 0 then it cannot be optimal. Hence, we
assume that z,, = 0 and show that we can always introduce an additional
signal value that strictly improves the bidder’s payoff.

131f 4y = 0, then P (x,y) = p (1 — p), that is, the same payoff as in the case when there
are no signals at all.



Example 2 To illustrate the approach adopted in the proof of the theorem,
consider the optimal 2-valued signal structure found in Example 1. We con-
struct the 3-signal structure by reassigning the probabilities as follows:

=1 =kz, y=1-k)y,
xl2 = kxl? yé - kyl +€7
xé:()v yézl_yl_‘E?

Choosing k = 0.5 and € = 0.1, we find that bidder’s ex ante payoff s 0.2841,
while the seller’s revenue 1s 0.3693 when p = 0.25. Hence, the bidder’s payoff
1s strictly higher than the one obtained under the optimal 2-valued signal
structure.

Further, the optimal 3-valued signal structure is'*

z, = 0.7295, y; = 0.1941,
Ty = 02705, Y2 = 01941,
T3 = O, Ys = 06118,

which leads to the bidder’s payoff of 0.2884, and the seller’s revenue of 0.3607.

5 Public Signal Structures

Similar results can be established when the signals about the valuations are
public. First, we determine what are the equilibrium strategies. Next, we
derive the expressions for the equilibrium payoffs and show that each bidder’s
ex ante payoff increases with an extra signal. It is important to emphasize
that we keep the original interpretation of the signals. For example, s; still
represents an imperfect signal about the valuation of bidder 2.

Proposition 2 Given public signals (s1,s2) = (k,1) such that k < I, an

equilibrium of the first price auction is as follows:*

1. A bidder with v =0 bids 0;

2. Bidder 1 with vi = 1 randomizes according to

DTk pri+(1—py 1 P
Fy. (b) = — 4
e (0) pre+(1—pye (Q—py 1-b (A-pu )

on the interval [O, Bk} ;

14The optimum was calculated numerically.
151f 9, = 0 and k = 1, both bidders bid 0.
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3. Bidder 2 with vy = 1 randomizes according to

DTk b

Fy (b) = 5
on the interval [O,Bk}, where
_ 1—
7 (1—p)yk

Y b+ (L—p) oy

The equilibrium payoff of a bidder with valuation v =1 is

_ Py
pri + (1 —p) yk

Tk

(6)

Clearly, the equilibrium when k£ > [ is obtained by interchanging the
strategies of bidders 1 and 2 in Proposition 2. To summarize, the expected
payoff of high valuation bidder, given any two public signals k& and [, is given
by Tmin{kyy = max {7, m}. Therefore, the ex ante payoff of bidder ¢ can be
written as

R(z,y) = (1 —p)uTly

where
m T T T ™
M T T o T2 2
m™ T Ty v 3 Uk
II = ,
T T2 T3 o Tp—1 Tp-1
™ To T3 Tp—1 Tn

nxn

= (uy,...,u,), and ux = prj+ (1 —p)yx for k = 1,...,n. In the matrix II, a
row k corresponds to signal s; = k about the valuation of bidder j # i, while
a column [ corresponds to signal s; = [ about the valuation of bidder ¢, given
that bidder ¢ knows that she has high valuation. From the matrix II and the
definition of 7, it is again clear that if xy/yr = Tx11/ygs1 for some k, then
signals k£ and k£ 4 1 can be merged in a single signal with the corresponding
probabilities x; + xy1 and y, + yr1. Therefore, we again restrict attention
to the case when zy/yx > w11 /ypyr forall k=1,...,n — 1.

10



Example 3 When n = 2, the ex ante payoff of bidder is
T1Y1
R(z,y)=p(1— 11—y + . 7
) =p-p {1 )
Differentiating the curly brackets in (7) w.r.t. x; gives
(1-p)yi
(pz1 + (L= p)yn)*

therefore it is optimal to set x1 = 1.1 Differentiating the curly brackets in
(7) w.r.t. yi, with xt1 =1, gives

>0

p
(p+ 1 =p)y)

_ VP

C1+p

Note that the solution for the optimal x1 and vy, is exactly the same as in the
Example 1 with 2 private signals. The ex ante payoff of bidder evaluated at
the optimal values s

—1+

5 =10

or

[

which is always lower than the ex-ante payoff with two private signals for all
.

When n = 3 and p = 0.25, the optimal 3-public signal structure is*’

71 = 0.7130, y, = 0.1975,
29 = 0.2870, 1y = 0.1975,
25 =0, ys = 0.6051,

which is different from the optimal 3-private signal structure in Exzample 2.
Note, however, the optimal structure possesses the same properties: xs = 0
and y1 = yo < ys. The bidder’s ex-ante payoff is 0.2533, which is again
lower than in the case of private signals. On the other hand, the extra signal
improves on the bidder’s payoff with 2 public signals, in which case the payoff
15 0.25.

Theorem 2 An extra signal improves the bidder’s optimal payoff:

16 Again, if y; = 0, then the payoff is the same as in the case when there are no signals
at all.
17 Again, the optimum was calculated numerically.
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6 The impossibility of credible communica-
tion

Up to now we have assumed that the center knows the valuations of the
bidders and sends them signals (depending on the valuation profile) to which
bidders freely peg their strategic bids. The adverse selection problem is the
following. Suppose the center does not know the valuation profile and has
to elicit it from the bidders to be able to generate the signals conditional
on this information. In the following subsections we prove that the center
is unable to elicit the bidders private information (their valuation). It turns
out that independently of the signal structure, no matter whether it is public
or private, the high type bidder would lie about her true valuation so as to
induce a distribution of signals under which her opponent bids (on average)
less aggressively. The main message of this section is that the first price
auction turns out to be a collusion-proof mechanism.

Now we setup the extended game, where first, bidders are informed about
their valuation and then may send a cheap talk message to the center, who
in turn randomizes according to a given signalling structure and sends these
signals privately or publicly to the bidders. Bidders submit bids which may
depend on the signals and receive their payoffs according to the original first
price auction. We show that there is no signalling structure and Bayes-
Nash equilibrium of this extended game in which bidders expect a better
payoff than in the non-cooperative equilibrium of the standard IPV first
price auction. In particular, this result implies that bidders cannot collude
on this first price auction using only direct, unmediated (without the center)
cheap talk messages.

6.1 Communication Equilibrium

By the revelation principle Myerson (1982) it is sufficient!® to consider canon-
ical communication devices (centers), introduced also in Forges (1986), which
receive type information from the bidders and depending on the reported type
profile randomize according to a given rule ¢ over the bid profiles and rec-
ommend these bids privately to the bidders. ¢ is a canonical communication
equilibrium if bidders sincerely report their types and obediently follow the
recommended bids in Bayes-Nash equilibrium of the extended game. First

18See Cotter (1991) for the generalization when action and state spaces can be large.
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we define a general communication equilibrium of the FPA. The extended
FPA is as follows. Let ¢ : {0,1}*> — A0, 1]*> be a canonical communication
device:

1. bidder i sends private report 9; to the center from message space {0, 1};
2. the center selects a bid profile (b;, b_;) according to q(v;, v—;)(b;, b_;);
3. the center privately informs bidder ¢ about b;;

4. bidders submit arbitrary bids at the FPA.

Denote with FPA;(v;,v_;,b;,b_;) the expected payoff of bidder ¢ with
type v; when submitting bid b; while bidder —¢ has valuation v_; and has
submitted b_;. The expected utility of bidder ¢ with valuation v; € {0,1}
when reporting v; and after recommendation b; bidding according to a mea-
surable r : [0, 1] — [0, 1] given that bidder —i is sincere and obedient is:

Ui(vi, 0;,7) = p/ FPA;(v;,0,7(b;), b_;)dq(v;,0)(b;, b_;)+

bib_;
1 —p) / FPA(vi, 1,7(bi), b_i)dq(7, 1) (b, b_2)
bib_;

Definition 2 We say that q is a communication equilibrium of the FPA if
for alli € {1,2},v;,v; € {0,1} and for all measurable r we have that:

Ui(via Il_]ia T) S Ui(vi7 Vi Zd)

where id s the identity mapping. That s, sincereness and obedience s a
Bayes-Nash equilibrium of the extended FPA.

6.2 Theorem on the Impossibility of Credible Commu-
nication

Lemma 1 In any communication equilibrium a bidder with type v; = 0 must
receive b; = 0 with probability 1.

13



Proof. See Lemma A.1. in Fang and Morris (2006). =

From the above lemma it follows that any communication equilibrium
must have the following structure. (For simplicity we concentrate only on
communication devices which handle the bidders symmetrically.) Let F' :
[0,1] — [0,1] be a cumulative distribution function and let ¢(1,0)(.,0) =
q(0,1)(0,.) be its corresponding Borel measure, and set ¢(0,0) to be the
Dirac measure corresponding to the bid profile (0,0). That is, ¢(1,0)(B) can
be positive only if there is (b,c¢) € B such that ¢ = 0. Similarly, ¢(0,1)(B)
can be positive only if there is (b,c¢) € B such that b = 0. The positive
measures are determined by F. Otherwise sets have 0 measure under ¢(1,0)
and ¢(0,1). Thus we only have to define ¢(1,1) and specify F'. Now we turn
to those canonical communication devices which correspond to the publicly
or privately and conditionally independently signalling center. Some more
notation is needed. Let X, (Y) be continuous cumulative distribution func-
tions with X’ = z, Y’ = y and with the interpretation that the random signal
is selected according to x (y) when a bidder has reported that he is of low
(high) type, that is, 0 (1). Assume that z/y is non increasing. Now let
ty : [0,1]2 — A[0, 1] with the interpretation that #;(s) is the mixed strategy
that a high type bidder 1 follows in equilibrium after receiving the signal s.
Let to(s1, s2) = t1(sq, s1) for all s = (s1, s2) € [0, 1] x [0, 1] and T1(s), Ta(s) be
the corresponding cumulative distribution functions and define ¢(1,1) as the
Borel measure corresponding to G(b,c) = [ [ Ti(s1, $2)(b)Ta(s1, $2)(c)dY dY
and set F'(b) = [ [ T1(s1,s2)(b)dXdY .

We say that ¢ is a canonical private conditionally independent commu-
nication equilibrium if t; depends only on its first coordinate and ¢ is a
communication equilibrium.

We say that q is a canonical public conditionally independent communi-
cation equilibrium if Ty, Ty is an equilibrium of the FPA with public signal
structure (x,y) and ¢ is a communication equilibrium.

Theorem 3 There exists no canonical public or private conditionally in-
dependent communication equilibrium of the FPA, where bidder’s payoff is
higher than in the unique Bayes-Nash equilibrium of the FPA.

The Theorem has an obvious corollary which states that the bidders can-
not collude in equilibrium using plain, unmediated cheap talk messages. To
state the corollary formally, we say that FPA is extended with possibly sev-
eral stages of cheap talk if bidders before submitting bids in the FPA have

14



the possibility to send (possibly simultaneously) messages to each other from
a message set M. Histories and strategy sets are defined in the natural way.

Corollary 1 There is no equilibrium in the cheap talk extension of the FPA,
where bidder’s payoff is higher than in the unique Bayes-Nash equilibrium of
the FPA.

Proof. Clearly, if there was one collusive equilibrium of the cheap talk
extension, then there would be a canonical public conditionally independent
communication equilibrium by the revelation principle, which also improves
on the FPA’s unique equilibrium. m

7 Discussion

7.1 Conjectures

Let us list some conjectures which we were not able to prove.
We have not been able to fully characterize the optimal signal structure
for any given n > 2 yet. Nevertheless, we have the following conjectures:

Conjecture 1 For any n > 2 the optimal private or public signal structure
(x,y): satisfies the followings: 0 < y; = ... = Yp_1 < Yo and x; > ... >
z, = 0.

Conjecture 2 For any n > 2 the optimal private structure is strictly better
for the bidders than the optimal public signal structure.

This result could have important implications about the way the infor-
mation is shared by trade associations. That is, usually a trade association
provides the same information to all its members, while the above conjecture
indicates that the members’ payoffs could be increased by providing differen-
tiated information. Though, the dissemination of differentiated information
also requires from the members a higher trust in the trade association, which
may not be possible in practice.

Conjecture 3 If there are infinitely many signals no optimal structure ex-
ists, and payoffs are converging to a supremum P.

An interesting question concerns the magnitude of this limit P.
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Conjecture 4 The correlated signal structure demonstrated in the next sub-
section gives strictly better payoffs than P.

An open question is, whether one can construct a collusive mechanism
with correlated signals in which the center does not know bidders’ valuations
and can impose no constraint on their bids. Our conjecture is:

Conjecture 5 There exists no communication equilibrium in which bidders
expect a higher payoff than in the Bayes-Nash equilibrium of the FPA.

The conjecture is in line with our findings. The closest result we are
aware of trying to prove the conjecture is Lopomo, Marx, and Sun (2009).
They use linear programming technique to show this impossibility. To be
able to apply LP, they assume that bidders place their bids on a grid, and
show that as the grid becomes finer the best collusive payoff converges to the
non-cooperative payoff level. Pavlov (2009) proves our conjecture for all pay
auctions. He also shows that, in a general FPA (with large type space) as
the number of bidders increases the best collusive outcome converges to the
non-cooperative one.

7.2 Correlation

We have considered the case when the signals are generated independently.
The following example demonstrates that we can improve bidders’ payoffs
even further by introducing correlation between the private signals. We con-
jecture that the equilibrium below is better for the bidders than the equilib-
rium with independent signals for any n.

Example 4 Let n = 2 and let the joint distribution of types be

0 1 2
0 p»* [p(d=-p| O
p-p| 0 |5
(1-p)?”
2 0 o 0

We claim that a bidder of type 1 will randomize according to

2p 1
GO0 =17
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on the interval [0, ﬁ} , while a bidder of type 2 will randomize according to
2p b
b g ——
G (0) 1—pl—0>

on the interval (0, %ﬂ. Suppose bidder 2 follows this strategy. Consider

bidder 1 of type 1. Her expected payoff is

p(1—p)+ G (b) 1o
: = .
p(l—p)—{—(l_QP) 1+p
Consider bidder 1 of type 2. Her expected payoff is
2p
1—-56)=——.
G1(0) (1) = 12

Thus, it is also optimal for bidder 1 to follow the given strategy.
When p = 0.25, the bidder’s ex ante payoff is 0.3, while the seller’s rev-
enue 1s 0.3375.

7.3 Adverse selection

McAfee and McMillan (1992) investigates optimal collusion in the presence
of “coordinative mechanisms” where bidders report their types to the center
and the center submits the corresponding bids. In the first price auction with
a reserve price r > 0, under the optimal collusion scheme, bidders truthfully
report their valuations, and the center bids r for the bidders whose valuation
is not less than r. That is, a center, who does not know the valuations but
has the right to submit bids, solves the adverse selection problem, meanwhile
abstracting away from the moral hazard problem.

A center which submits the bids can be thought of as a constraint on the
bidders’ admissible bids, which may depend on the reports. Let us introduce
now a center which faces both the adverse selection and the moral hazard
problem. We let the center to impose a less stringent constraint compared
to that of McAfee and McMillan (1992). The constraint is as follows: a
bidder who reported v" about her valuation is not allowed to bid more than

v'.1% Suppose now that bidders are asked about their valuations and bid

19Guch a center can be thought of as a regulator which asks the participants to report
about their costs c. If the report is ¢/, the regulator does not allow to bid b < ¢’ in
a procurement auction. Participants may also get information about each others’ costs
through the regulator.
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according to the signals they have received from the center. The only possible
profitable deviation is to report valuation V; when the bidder is of valuation
type V}, and then bid above V;. As a consequence, if the center can impose
the constraint that bids have to be lower than the reports, such a deviation
will not be profitable, which solves the adverse selection problem from which
we abstracted away at the beginning.

Notice also this constraint disciplines only the reports. Once the reports
are truthful, the constraint obviously does not bind. Moreover, this obser-
vation is not a special feature of our model, but the same is true in the

multidimensional type setup of Bergemann and Vélliméaki (2006) and Kim
and Che (2004).
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8 Appendix

Proof of Proposition 1. First, note that F; (l_)j) =1forall j € nis
satisfied and so the mixed strategies are well defined. Suppose that bidder 2
follows the strategy given in Proposition 1 and y; > 0. Consider bidder 1 of
type (1,5),7 € n. Her expected payoff when bidding b € [b;_1,b;] is

pri+(1-pySiw  (A-py )
{ prj+(1—p)y +pxj+(1_p)ijy(b)}(1 b) .
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Substituting Fj (b) from (1) yields a positive constant

by + (1 _p) Y;j Z;c;ll Yk (1 _[—)‘ 1)
pr;+ (1 —p)y; !

Therefore, bidder 1 is indeed indifferent between any bid in the interval

[bj-1, ;]
Suppose now that bidder 1 of type (1,7) bids in an interval [51_1, I_)l} for
[ # j. Her expected payoff is

prj + (1= p)y; Doy Ui (1—p)yy
{ pﬂfﬁ(l—p)ykj pxﬁ(l—p)yjﬂ(b)}(l_b)

o+ (=D e vk,

B prj+ (1= p)y; h=h

(I=p)yu pr+ (1 —p) S e U

(6~ b

pr;+ (1 —p)y; (1—p)y?
b y; -1 -1
J
= = |pu+A=p)u Y w|—|pe; +A =D y; > i
pxj+(1—p)yj{yz< ; ! ‘7;
b .
= P <&xl—xj>+<1>,
pr;+ (L—=p)y; \u

where the rest of the terms that do not contain b are collected in the param-
eter ®. Since z;/y; > z;/y; for all | < j, it follows that the payoff of type
(1,7) is increasing in b for b < b;_; and therefore bidder 1 of type (1,5) does
not want to deviate by bidding below b; ;. Similarly, since x;/y; < x;/y; for
all [ > j, it follows that the payoff of type (1,j) is decreasing in b for b > b;
and therefore bidder 1 of type (1,j) does not want to deviate by bidding
above b; either. If y; = 0, using the tie breaking rule, the proof is basically
the same. Finally, bidder 1 of type (0, 7) will not bid above zero as it implies
a negative expected payoff, while any lower bid would still give a payoff of
0.2 m

Proof of Theorem 1. Using (2) and (3), the expected payoff of a bidder
can be expressed as

P(z,y) = (1 —p) (21 + 2120 + 212223 + ... + 2129...2n-1%n) ,

20Tt appears that one can also demonstrate the uniqueness of this equilibrium along the
lines of Fang and Morris (2006).
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where -
pri+ (1 —=p)yid ;- 1%

prics+ (1= p)yic1 X v

for i > 1 and z; = pzy. The proof consists of two parts. First, we show that
a signal structure (z,y), with x, > 0 cannot be optimal. Next, we show for
any signal structure (z,y), with x, = 0 how we can increase bidder’s payoff
by introducing an additional signal.

Assume first that z,, > 0. Let us define a new signal structure (2’,v’),
as follows: ) = x; fori =1,...,n—2, 2, | =x,1+¢€ 2, =2, —€ >0,
and y, = y; for i = 1,...,n. € must be sufficiently small to ensure that
xS /Yy o>l /y. | holds.?! Given the assumptions about (2/,y') .., we
only need to show that

n+1’

1 (T4 2,) <2 (1+2))

Pyt + (1 =p) Yo Zyj (1 I s (1 =) yn QY + Yn-1)
Lz + (1 = D) Yn-2 D ¥ prr—1 4+ (1= D) Yn-1 QCYj + Yn-1)

P+ )+ =p)yn12y; (1 L PEn =t A= p)yn o8+ Ynn)
Prno+ (1 =p)yn2d Y P@nat+ )+ (1 =p)yn1 QY+ Y1)

where we write > y; instead of > 777 ?y,. The above expression is equivalent
to

PTp_1 + (L =) Yn—1 2 ¥j p@na+e)+ (1 =p) Y19

Proa+ (1 =p) Y1 QUi +Un1) 2@ +6)+1=p) Y1 QoY+ Yn1)

The right hand side is increasing in ¢ and since both sides are equivalent
for € = 0, it follows that we can always increase the payoff by shifting some
probability away from z,, to x,,_;. Thus, z,, > 0 cannot hold in the optimum.

Suppose now that x, = 0. We introduce an additional signal in the
following way: «} = z; and y, = y; for i =1,....n — 2, 2/, | + 2, = x,_1 and
Y1+ Y, + Yhi1 = Yn—1 + Yn, and let 2/, ; = 0. Now we need to compare
Zno1 (1+ 2,) with 2,y (142, (14 2,,4)).

21Tt can also be shown that it is always possible to increase bidder’s payoff by introduc-
ing an extra signal when x,, > 0. It can be done by defining the new probabilities in the fol-
lowing way: xj = x; and y; = y; fori =1,...,n—1, and x], = ©,/24€, 2], | = ,,/2—€ > 0,
Yy, = Yn/2, and y;, .1 = yn/2, where € is such that x],_,/y;,_; > w7, /y,, holds.
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Now

P+ (L= p)Yn-1DY; (1 =p) yn Qv + Yn1)
-1 (1420) = P+ (1 =p)Yn2) Yy; (1 - o1+ (1 =p)yna QO y; + ynl))

where we write )y, instead of Z;Zf y;, while

pry, A+ (1 =p)yn 1D Y
2 (T4 2 (1+ 2 = —= o X
! ( ( H)) PTp—2+ (1 —p) Yn_o Zyj

(1 pal, 4+ (L=p)y, (X v+ voy)
prl,  + (L =p) vy (Cy+vy)

><<1+ (L =) ypr Oy + vy + 1) ))

pal+ (1 —p)yh (i + Yy + 1)

Desired inequality

o1 (L4 20) < 2y (L4 2, (14 2,44))
is satisfied if

Prn1+ (1 —p)Yn1d y; (1 N (1 =D)yn O + Yn—1) )
pry, (1 =p)y, 1> Y PTa1 + (1 =) Yno1 QY5 + Yn-1)

~ s pah + (1 =p)y, (v +yhy) N S OF /% (X + vy + )
ph  + (1 =p)y (v +v,y) pal + (1=p)yl (v + vy + 1)

or

px:z—l + (1 - p) Yn—1 Z Y v (8)

P, + (1 =p)yn_1 2 Y

prnfl + (1 - p) (ynfl + yn> (Z Yj + ynfl)
P+ (1 =p) Yo QoY + Yn-1)

pr, + =Py Dyt vn)

pr,  + (L =p)yn . Y+ )

Pt (L =p) (- vi) S+ v +00)
pr, + (1 =p)y, Oy + v +u,)

-1
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Let us define the new probabilities as follows:

Ty = (1=k)z,,

x, = kr,_1,

xln-i—l = 0,

Y1 = (1=FK)yn,
v, = ky,_1+e,

y;+1 = UYn — €

where k € (0,1) and € € (0,yy).
Using that

the left hand side of (8) becomes

1+ (1 =) Wn-1 + yn) O Yj + Yn-1)

—1.
pr, o+ (L =p)yn s QoY + Yn-1)

Further, using that x,—1 = a/,_; + 2], and yn—1 + Yn = ¥o_1 + Y, + Y11, it
can be written as
py, + (1 =) U + Ynys) S j + Y1)
T+ (1 =)y O Yj + Yn-1)

Thus, it remains to check whether the following inequality

pr, 4+ (1 =p) (W + Yosr) OOy + Un1)
T+ (1 =)y QoY + Yn-1)
pr, + (1 =p)y, Oy + v y)
Pl + A =p) o (v +Y)
P (=) W+ 90) (S5 + v +un)
pry, + (L=p)y, (Y + Yt +95)

or, after substituting for z/,_,, «/, y/,_;, and y/,, and re-arranging, whether
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the following inequality

PToa+ (1 =) Yn1 QoY + Y1)
p17n—1+(1_ )yn 1(2% ( )yn 1)
PREno 4 (1= p) (kyar +€) Qg5+ (1= k) Y1)
pkry 1+ (1 =p) (kyn-1+€) QO Yj +Yn1+6)
_ pkx,_1 + (1 - p) (kyn—l + yn) (Z Y; + yn—l) > 0
Pk 1+ (1= p) (kyn-1 +Yn) QY + Y1 +¢)

is true.

We take the first order Taylor expansion of the above expression at € = 0
to see if for € > 0 this expression is strictly positive. If the above expression
is represented as f (€), then f(e) = f(0) + f'(0)e + R (¢). Notice that if
e = 0, then the above expression is equal to 0, that is, f (0) = 0, while f’(0)
is

PTa1+ (1= ) Yn-1 Qo ¥s + Yn-1)
Pt + (L= p) Yn1 QY5 + (1 — k) yn1)
WA EU TR

Pkzn1+ (1= p) kyn—1 Q_ Y5 + Y1)
_p/{:(lﬁn,l + (1 - p) kyn—1 (Z Y; + (1 - k) ynfl)
Pkt + (1 =p)kyn1 Qo Yj + Yn-1)
(1—p)Qyi+ A +k) Y1) }
pkr, 1+ (1 =p) kyn1 Qo Yj + Yn-1)
pkx,_1 + (1 - p) (kyn—l + yn) (Z y; + yn—l)
Pkzn1 + (1= p) (Byn—1 +yn) Q¥ + Yn-1)
y (1= p) (kyn—1 + yn)
Pkn1 4+ (1= p) (kyn-1+Yn) QY + Yn-1)’

which can be simplified to

(1—p)Qyi+ A —k)yn)
pTon-1+ (1 =p)yYn1 QoY + (1 — k) Yn1)
1, A-p) Xy + (4K y)
ko prna+ (1 =) Y1 Qo + Yn1)

(1 - p) (kyn—l + yn)

_l’_ .
Pkxn—1+ (1 =) (kyn-1 + yn) Q- Y5 + Yn-1)

1><
k
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Zn—1. Then

To simplify notation, let ¥ = ] P

1 % >y + (1= k) yny
ko U4y Qo yy + (1= k) Yn)
L 2. Y+ (1 + k) yn kyn—1+ yn
ko Ut yu (24 Hyn-1) KV A+ (ko1 + 9n) 2 Y5 + Yn1)

v
(R + (ks + ) (505 + Y1)
« \ijn - kynfl (\IJ + yn—l)

(Ut Y1 QO+ (L= k) Y1) (¥ + Y1 Qo Y5 + Yn—1))

It follows that if £ is chosen such that

. Yy,
0 <k <min (1, , 9
( Yn—1 (\Ij + yn—l)) ( )

then the derivative f’(0) is positive, which was necessary to prove.
Finally,
f"(9)

R(e) = T€2

where 6 € [0, ¢]. f” () exists and is finite for 6 € [0, ¢]. Therefore, for a given
k, satisfying (9), we can always select € satisfying

(r0+ 20 o

|

Proof of Proposition 2. First, note that Fj (Bk) = Fy (Bk) =11is
satisfied and so the mixed strategies are well defined. The expected payoff
of bidder 1 with valuation v; = 1 is given by

{ Dk P g O F T30S (b)} (1-b). (10)

prr+ (1 —p)ye  prr+ (1 —p)yk

Substituting (5) into (10), we can verify that bidder 1 is indifferent among
all bids in the interval [O, bk], earning an expected payoff of 7 given in (6).
Similarly, the expected payoff of bidder 2 with valuation vy =1 is

bt L—p)u -
{pxz+(1—p)yl+pxl+(1_p)ylﬂk(b)}(1 b). (11)
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Substituting (4) into (11), we can verify that bidder 2 is also indifferent
among all bids in the interval [O, Bk}, earning the same expected payoff 7.
Obviously, no bidder has incentives to bid above by, while any bid below 0
would give a payoff of 0. Thus, we can conclude that (4) and (5) represent
equilibrium strategies of high valuation bidders when signals are k£ and [,
with k£ < [. Finally, a bidder with v = 0 will not bid above zero as it implies
a negative expected payoff, while any lower bid would still give a payoff of 0.
]

Proof of Theorem 2. Consider introducing signal 0 and re-assign the
probabilities as follows:

Ty = wx1/2+¢,

Ty = 11/2—¢,
Yo = /2,
y/1 = y1/27

and r; = z; and y; = y; for j = 2,...,n, with e > 0. Note that ¢ must be

sufficiently small to ensure that

Also, note that the construction requires that y; > 0. It will be argued later
that it is not optimal to have y; = 0 under the optimal signal structure.
Let II denote a matrix that is obtained from II by eliminating the first
column and row. Similarly, let @ and  denote vectors obtained from u and
y, respectively, by eliminating the first element. Then the bidder’s payoft,
conditional on having the high valuation, for n signal case can be written as

R(z,y)
IL—p

yl ~ITT ~
=pr1|1—y + + ' Ily.
p 1( n px1+(1—p)y1> Yy

In a similar manner, the bidder’s payoff after introducing signal 0 can be
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written as

R« y) ,( ) Yo )
— = pry |1l -y, +
1—p 0 O pap+ (1—p)yh

Y
+p] (1 -y + )
! Popri+(L-p)u
pry + (1 —p) Yo
pr] T y?par’lyi
1 1

—prYp —
+a/'TIj.

After some manipulation, to show that R (z',y") > R (z,y) is equivalent to
showing that

:c’y’ x’y’ px' + 1_p y/
/ -0 /+ ’ — ,+x6y'1— ? ( ) ?xllyi
pro+ (1 —=p)lyy  pry+(1—-p)y pzh + (1 —p)y
T1Y1
pri+ (1 —p)yi
or
(1'1 + 26) ($1 — 26)

P@T20+0-pu  pm-20+1-pu
p(xy+2¢)+(1—p)wy (21/2 — )

B A s pr s g

2.731
pri+(1—p)y

Denote the left hand side of the above expression as f (¢). Then f (¢) =
f(0)+ f(0)e+ R (¢). Note that f(0) = 2x1/ (px1 + (1 — p) y1), therefore we
only need to show that f’'(0) > 0 to establish the desired inequality. f’(0)

is given by
bxy
211— > 0.
( pr1 + (1 —p)yl)

Thus, adding an extra signal increases the expected payoff of bidder.

To complete the proof, we show that it is not optimal to set y; = 0.
Take a signal structure (x,y) such that y; = 0. Consider taking a small
probability € away from y, and assigning it to y;, without changing the rest
of probabilities. This only affects the first two columns and rows of matrix II,
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and the first two elements of v and y. Writing out the corresponding terms
in R (x,y) (and ignoring the rest of the term that do not change), we obtain

€
1|1 —e+
P 1( pw1+(1—p)6)

Y — €
+px2(1—yg+e+ )
pro+ (1 —p) (y2 —€)

pr1+ (1 —p)e
pr2+ (1 —p) (Y2 —

—pTo€ — pro (Yo — €) .
€)

Rearranging, gives

T1€ Ty (Y2 — €)
p(plef(l—P)e+px2+(1—p)(y2—e)) I=po=(1=pO+2

where ® contains terms independent of e.

We want to know if the derivative of the above expression with respect
to € is positive at € = 0. If so, it would imply that the bidder’s payoff can be
increased by shifting some probability from y, to y;. The derivative is

_ bx2 ’ —pr) — p(1—p)aays
(1 (p$2+(1—p)92)><1 poa) pra+ (1 —p)ys’

To verify that the derivative is positive, multiply it with (pzs + (1 — p)y2)?
and rearrange to obtain

(1 =p) y2 {pxa (1 — pr1) + (pr2 + (1 — p) y) (1 — p (21 + 32))},

which is indeed positive. m
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Proof of Theorem 3.

Case 1 (No Private Communication Equilibrium) Letp = 0.5 for sim-
plicity. The result naturally extends to other values of p. Let q : {0,1}* —

A0,1]? a canonical communication device defined above. Denote with g(b) =

G'(b,1) and f(b) = F'(b), whenever F,G are differentiable (almost every-

where). In case of countably many signals it can be easily seen from 1 that

f/g = xi/yi is a step function. Suppose q is a communication equilibrium.

Then the followings should hold: Yb € supp g U supp f

f(b) +9(b)G(b) f(b) +9(b)G(c)
f(b) +g(b) f(0) +g(b)
This means that assuming sincere report and by independent recommenda-

tions, after recommendation b, b must mazimize the RHS of inequality (12),
the moral hazard condition. The necessary conditions are FOC:

(1-0) > (1—¢) (12)

f(®) = g(b)(g(b)(1 —b) — G(b)) (13)
and SOC:
% < 0. (14)

(14) means a non-increasing likelihood ratio from which it follows that F'(b) >
G(b). That is, the equilibrium conditions simply imply the monotone likeli-
hood ratio. Moreover, (13) shows that g uniquely determines f and the high
type’s expected payoff in equilibrium is

1 1
0.5/ (f(b) + g(b)G(b))(1 — b)db = 0.5/ (1 —b)%g*(b)db. (15)
0 0
Assume that (15) is larger than 0.5 since we assume the existence of a collu-

sive communication equilibrium. Now we wish to prove that, if (15) is larger
than 0.5 then

/0 (F() + 9GO (L~ Bdb < max(1 + FO)(L~8)  (16)

That is, we want to show in (16) that high type bidders are better off when
reporting 0 to q and choosing their bids optimally.
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We show there is a ¢ which mazimizes F(b) — G(b) and (1 4+ G(b))(1 —b)
at the same time. A high type bidder, who reports 0 and bids ¢ will be better
off then the LHS of (16).

If ¢ mazimizes F(b) —G(b) then it must be that F'(b)—G(b) < F(c ) G(c)
for all b. If ¢ > b, then G(c) — G(b) < F(c) — F(b) and writing [, g(a)da <
Jy f(a)da we have that it is true if f(a) > g(a). If ¢ <b, then G(b) — G(c) >

F(b) — F(c) and writing f g(a)da > f f(a)da, we have that it is true if
f(a) < g(a).

Changing the roles of b and ¢ in (12) and rearranging, we have that:

(1—b)+ %(b — )+ G(e)(1—c) > Gb)1—b) + (1 —b)

Now, if b > ¢ and % <1lorb<cand 58 > 1, we can have that:
(1-0c)+G()(1—c)>GO)(1—b)+ (1)

So we can choose ¢ = sup{b : g( > 1}.
Now we show that reporting 0 and bidding c is a profitable deviation for
a high type bidder. The LHS of (16) can be written as

bm 1
/0 (f(b) = g(b))(1 = b)db + /0 g(b)(1+ G(b))(1 = b)db

_ /bm F(b) — G(b)db + /1(1 + GB)(1 — b)g(b)db
< (F(e) = G(c)bm + (1 + G(c))(1 — ),

where by, is the highest possible bid. Evaluating the RHS of (16) at b = ¢ and
combining it with the LHS of (16) we have that:

(F(c) = G(€)bm < (F(c) = G(e))(1 = ¢)

if by < (1 —c¢).

Finally we argue by reaching a contradiction that 1—c < b, is impossible.
We show that a sincere high type must expect a payoff which is less than 0.5
if 1 — ¢ < by,. First, notice that by (13) (FOC): g(b)(1 —b) — G(b) > 0 for
all b. Rearranging and integrating from d > 0 to b > d we have

dt > —dt
[ &= [
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or L4
G(b) > = bG(d).

Let b = by,. Then for all d < b, we must have that ¢ > 1—0b,, > (1—d)G(d).
Since ¢ maximizes (1 —0)(1+ G(b)) it must be that 1 > 1—c+G(c)(1—¢) >
(1 = b)(1+ G(b) from which G(b) < %. Since G(0) = 0 it must be that
g(0) < 1 otherwise the previous inequality would not hold for b sufficiently
close to 0.

Finally by (14) (SOC): ¢'(b)(1 — b) — 2¢g(b) < 0 and rearranging and
integrating both sides from 0 to b we have that: (1 — b)g(b) — g(0) < G(b)
from which (1 —b)g(b) < 12 + 1 = 115 by using the upper bounds on g(0)

and on G(b). That is, g(b) < ﬁ and using the RHS of (15) the payoff is

smaller than 0.5 [ g(b)db = 0.5.

Case 2 (No Public Communication Equilibrium) Assume that q is a
canonical public conditionally independent communication equilibrium. Take
any s = (s1,82) and assume without loss of generality that x(s1)/y(s1) >
x(s2)/y(s2). Then 2 remains true when instead of xs,,Ys,, Ts,, Ys, we write
x(s1),y(s1),x(s2),y(s2). Notice that To(s) = Fs (where F is Fy from 2) and
the expected payoff of both bidders when they know the signal s is

pr(s)
p(s1) + (1 —p)y(s1)

which is non-increasing in s1. Therefore the expected payoff of an honest high
type before receiving the recommendation can be written as:

m(s1) =

= / [(p(s1) + (1 ply(s1))(1 = Y (s1))+

+y(s1)(p(1 — X(s1)) + (1 = p)(1 = Y(s1)))]7(s1)ds1

Now suppose for a moment that the deviator after reporting 0 to q gets the
public signal s instead of 0 recommended bid. Then his payoff is

M- / [(pe(s1) + (1= ply(s1) (1 — X(s1))+

+a(s1)(p(1 = X(51)) + (1 = p)(1 = Y (s1)))]m(s1)ds1

31



First we show that I1 > II, then we argue that the deviator can get € close
to I1 even if he receives only the 0 recommendation from q by simply bidding
€. But 11 > TI holds since X >Y since x/y is non-increasing (Y first order
stochastically dominates X and so y(1 —Y') dominates x(1 — X)) and w(s1)
15 non-increasing and not constant. Finally, notice that by bidding € the
deviator may get less than he gets when he knows the public signal only if b
(the upper limit of the support of T'(s)) is smaller than €. In other words, if
€ is not in the support of T'(s). Thus, by bidding € the deviator wins at least
IT—e.
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